已知抛物线 y=﹣ 1 2 x 2﹣ 3 2 x的图象如图所示:
(1)将该抛物线向上平移2个单位,分别交 x轴于 A、 B两点,交 y轴于点 C,则平移后的解析式为 .
(2)判断△ ABC的形状,并说明理由.
(3)在抛物线对称轴上是否存在一点 P,使得以 A、 C、 P为顶点的三角形是等腰三角形?若存在,求出点 P的坐标;若不存在,说明理由.
如图,已知二次函数 的图象与 轴交于A、B两点. (1)写出A、B两点的坐标(坐标用 表示) (2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式 (3)设以AB为直径的⊙M与 轴交于C、D两点,求CD的长.
如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD的延长线的垂线PQ,垂足为C. (1)求证:PQ是⊙O的切线; (2)已知⊙O的半径为2,若过点O作OE⊥AD,垂足为E,OE= ,求弦AD的长.
如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D. (1)求D点坐标; (2)求二次函数的解析式; (3)根据图象直接写出使一次函数值小于二次函数值的x的取值范围.
为建设美丽家园,某企业逐年增加对环境保护的经费投入,2012年投入了400万元,预计到2014年将投入576万元. (1)求2012年至2014年该单位环保经费投入的年平均增长率; (2)该单位预计2015年投入环保经费不低于680万元,若继续保持前两年的年平均增长率,该目标能否实现?请通过计算说明理由.
已知关于x的一元二次方程(a+1)x 2﹣x+a 2﹣3a﹣3=0有一根是1. (1)求a的值; (2)求方程的另一根.