如图,已知直线y=2x分别与双曲线y=,y=(x>0)交于P、Q两点,且OP=2OQ,点A是双曲线y=上的动点,过A作AB∥x轴,AC∥y轴,分别交双曲线y=(x>0)于点B、C.连接BC.(1)求k的值;(2)随着点A的运动,△ABC的面积是否发生变化?若不变,求出△ABC的面积,若改变,请说明理由.(3)直线y=2x上是否存在点D,使得点A、B、C、D为顶点的四边平行四边形?若能,求出相应点A的坐标;若不能,请说明理由.
如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.
解方程:.
我们知道,经过原点的抛物线解析式可以是。 (1)对于这样的抛物线: 当顶点坐标为(1,1)时,a=; 当顶点坐标为(m,m),m≠0时,a 与m之间的关系式是; (2)继续探究,如果b≠0,且过原点的抛物线顶点在直线上,请用含k的代数式表示b; (3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,B3,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过点Dn,求所有满足条件的正方形边长。
如图,等腰梯形ABCD中,AD∥BC,∠B=450,P是BC边上一点,△PAD的面积为,设AB=x,AD=y。 (1)求y与x的函数关系式; (2)若∠APD=450,当y=1时,求PB·PC的值; (3)若∠APD=900,求y的最小值。
如图,△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=。 (1)求证:BC是⊙O的切线; (2)求的长。