如图,已知直线y=2x分别与双曲线y=,y=(x>0)交于P、Q两点,且OP=2OQ,点A是双曲线y=上的动点,过A作AB∥x轴,AC∥y轴,分别交双曲线y=(x>0)于点B、C.连接BC.(1)求k的值;(2)随着点A的运动,△ABC的面积是否发生变化?若不变,求出△ABC的面积,若改变,请说明理由.(3)直线y=2x上是否存在点D,使得点A、B、C、D为顶点的四边平行四边形?若能,求出相应点A的坐标;若不能,请说明理由.
解方程:(每小题4分,共8分) (1)2(x-3) -3 ( x+1) =2(2)-=1
请把下列各数填在相应的集合内(本小题4分) +4,-1,-,-(+),-(-2),0,2.5,π,-1.22,100% 正数集合:{ } 非负整数集合:{ }
我们容易发现:反比例函数的图象是一个中心对称图形,你可以利用这一结论解决问题。如图,在同一直角坐标系中,正比例函数的图象可以看作是将x轴所在的直线绕着原点O逆时针旋转度后的图形。它与反比例函数的图象分别交于第一、三象限的点B、D,已知点A(-m,0)、C(m,0)。 (1)判断并填写,不论取何值,四边形ABCD的形状一定是______; (2)①当点B坐标为(p,1)时,四边形ABCD是矩形,试求p、和m的值; ②观察猜想:对①中的m值,能使四边形ABCD为矩形的点B共有几个?(不必说理) (3)试探究:四边形ABCD能不能是菱形?若能,直接写出B点的坐标;若不能,说明理由。
学完“证明(二)”一章后,老师布置了一道思考题:如图,点M、N分别在正三角形ABC的边BC.CA上,且BM=CN,AM、BN交于点Q。求证:∠BQM=60°。 (1)请你完成这道思考题; (2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如: ①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题? ②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°? ③若将题中的条件“点M,N分别在正三角形ABC的BC、CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?对②,③进行证明。(自己画出对应的图形)
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2),过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N。 (1)求直线DE的解析式和点M的坐标; (2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上; (3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围。