如图,已知抛物线 y = a x 2 + bx + 5 经过 A ( - 5 , 0 ) , B ( - 4 , - 3 ) 两点,与 x 轴的另一个交点为 C ,顶点为 D ,连接 CD .
(1)求该抛物线的表达式;
(2)点 P 为该抛物线上一动点(与点 B 、 C 不重合),设点 P 的横坐标为 t .
①当点 P 在直线 BC 的下方运动时,求 ΔPBC 的面积的最大值;
②该抛物线上是否存在点 P ,使得 ∠ PBC = ∠ BCD ?若存在,求出所有点 P 的坐标;若不存在,请说明理由.
计算: --(-2)
求下列各式中的值:
.计算:(1) (2)(3) (4) (6)
计算:(1) (2)(3) (4)
计算(每小题3分,共 18分,) (1) (2) +(-) (3) (4)2- (5) (6)