计算:2-1-(π-2014)0+cos245°+tan30°•sin60°.
已知关于 x 的方程 x 2 - ( 3 k + 3 ) x + 2 k 2 + 4 k + 2 = 0
(1)求证:无论 k 为何值,原方程都有实数根;
(2)若该方程的两实数根 x 1 、 x 2 为一菱形的两条对角线之长,且 x 1 x 2 + 2 x 1 + 2 x 2 = 36 ,求 k 值及该菱形的面积.
在大课间活动中,体育老师随机抽取了八年级甲、乙两个班部分女同学进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分 组
频数
频率
第一组 ( 0 ⩽ x < 15 )
3
0.15
第二组 ( 15 ⩽ x < 30 )
a
0.3
第三组 ( 30 ⩽ x < 45 )
7
0.35
第四组 ( 45 ⩽ x < 60 )
4
b
(1)频数分布表中 a = , b = ,并将统计图补充完整;
(2)如果该校八年级共有女生180人,估计仰卧起坐一分钟完成30或30次以上的女学生有多少人;
(3)已知第一组中只有一个甲班同学,第四组中只有一个乙班同学,老师随机从这两个组中各选一名学生谈心得体会,用树状图或列表求所选两人正好都是甲班学生的概率.
先化简 x 2 x + 3 · x 2 - 9 x 2 - 2 x - x 2 x - 2 ,再从 - 3 、 - 2 、0、2中选一个合适的数作为 x 的值代入求值.
已知抛物线 y = a x 2 + bx + c ,其中 2 a = b > 0 > c ,且 a + b + c = 0 .
(1) 直接写出关于 x 的一元二次方程 a x 2 + bx + c = 0 的一个根;
(2) 证明: 抛物线 y = a x 2 + bx + c 的顶点 A 在第三象限;
(3) 直线 y = x + m 与 x , y 轴分别相交于 B , C 两点, 与抛物线 y = a x 2 + bx + c 相交于 A , D 两点 . 设抛物线 y = a x 2 + bx + c 的对称轴与 x 轴相交于 E . 如果在对称轴左侧的抛物线上存在点 F ,使得 ΔADF 与 ΔBOC 相似, 并且 S ΔADF = 1 2 S ΔADE ,求此时抛物线的表达式 .
某市总预算 a 亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.
2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加 b 亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年年初开始逐年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到 3 : 2 .
(1)这三年用于辅助配套的投资将达到多少亿元?
(2)市政府2015年年初对三项工程的总投资是多少亿元?
(3)求搬迁安置投资逐年递减的百分数.