如图1,抛物线 y = a x 2 + bx + 3 ( a ≠ 0 ) 与 x 轴交于 A ( - 1 , 0 ) , B ( 3 , 0 ) ,与 y 轴交于点 C .已知直线 y = kx + n 过 B , C 两点.
(1)求抛物线和直线 BC 的表达式;
(2)点 P 是抛物线上的一个动点.
①如图1,若点 P 在第一象限内,连接 PA ,交直线 BC 于点 D .设 ΔPDC 的面积为 S 1 , ΔADC 的面积为 S 2 ,求 S 1 S 2 的最大值;
②如图2,抛物线的对称轴 l 与 x 轴交于点 E ,过点 E 作 EF ⊥ BC ,垂足为 F .点 Q 是对称轴 l 上的一个动点,是否存在以点 E , F , P , Q 为顶点的四边形是平行四边形?若存在,求出点 P , Q 的坐标;若不存在,请说明理由.
已知动点P以每秒2cm的速度沿如图所示的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S关于时间t的函数图象如图所示,若AB=6cm,试回答下列问题:(1)动点P在线段 上运动的过程中△ABP的面积S保持不变.(2)BC= cm; CD= cm; DE= cm; EF= cm(3)求出图乙中的a与b的值.
某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)一个月内通话多少分钟,两种移动通讯费用相同;(3)你能为用户设计一个方案,使用户合理地选择通信业务吗?(4)某人估计一个月内通话300min,应选择哪种移动通讯合算些.
在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.(1)这辆汽车的往、返速度是否相同?请说明理由;(2)写出返程中y与x之间的函数表达式;并指出其中自变量的取值范围.(3)求这辆汽车从甲地出发4h时与甲地的距离.
在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案:(1)若这四个点的纵坐标若保持不变,横坐标变为原来的,所得图案与原来的图案相比有什么变化?(2)横坐标不变,纵坐标分别减3,所得图案与原来图案相比有什么变化?(3)横坐标、纵坐标分别变为原来的2倍,所得图形与原图形相比有什么变化?
平面直角坐标系中,△ABC的顶点都在网格点上。(1)平移△ABC,使点C与坐标原点O是对应点,请画出平移后的△A′B′C′;(2)写出A、B两点的对应点A′、B′的坐标;(3)求出△ABC的面积。