如图,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点.
(1)求抛物线的函数表达式;
(2)如图1,P为抛物线上在第二象限内的一点,若ΔPAC面积为3,求点P的坐标;
(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与ΔABC相似?若存在,求点M的坐标;若不存在,请说明理由.
五一假期中,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮.两人沿滨江路并行跑了2分钟后,决定进行直线长跑比赛,比赛时小明的速度始终是250米/分,小亮的速度始终是300米/分.下图是两人之间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题: (1)请直接写出小明和小亮比赛前的速度,并说出图中点A(1,500)的实际意义; (2)请在图中的()内填上正确的值,并求两人比赛过程中y与x之间的函数关系式; (3)若小亮从家出门跑了11分钟时,立即按原路以比赛时的速度返回,则小亮再经过多少分钟时两人相距75米?
如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,≈1.732).
已知关于x的一元二次方程有两个不相等的实数根. (1)求实数k的取值范围; (2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由; (3)若此方程的两个实数根的平方和为30,求实数k.
国家教育部规定“中小学生每天在校体育活动时间不低于1小时”.某中学为了了解学生体育活动情况,随机抽查了520名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”.以下是根据所得的数据制成的统计图的一部分.根据以上信息,解答下列问题: (1)该校随机抽查的学生中每天在校锻炼时间超过1小时的人数是 ; (2)请将图2补充完整; (3)2013年该市初中毕业生约为6.4万人,请你估计今年该市初中毕业生中每天锻炼时间超过1小时的学生约有多少万人?
“一方有难,八方支援”.雅安地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援雅安. (1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果; (2)求恰好选中甲医生和护士A的概率.