1、探究 (1) 在图1中,已知线段AB,CD.①若A (-1,0), B (3,0),则AB=__________;②若C (-2,2), D (-2,-1),则CD=__________;(2)在图2中,已知线段AB的端点坐标为A(1,1) ,B(4,3),请求出图中线段AB的长度.2、归纳 无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),请用a、b、c、d表示线段AB的长度(不必证明)。
如图,在平行四边形 ABCD 中, E 是 AD 边上的中点,连接 BE 并延长交 CD 的延长线于点 F .
求证: DF=DC .
如图,抛物线 y=- x 2 +mx+2 与 x 轴交于 A , B 两点,与 y 轴交于 C 点,点 A 的坐标为 (1,0) .
(1)求抛物线的解析式;
(2)在抛物线的对称轴 l 上找一点 P ,使 PA+PC 的值最小.并求出 P 点坐标;
(3)在第二象限内的抛物线上,是否存在点 M ,使得 ΔMBC 的面积是 ΔABC 面积的一半?若存在,求出点 M 的坐标,若不存在,请说明理由.
如图,在 ΔABC 中, AC=CB , O 是 AB 的中点, CA 与 ⊙O 相切于点 E , CO 交 ⊙O 于点 D
(1)求证: CB 是 ⊙O 的切线;
(2)若 ∠ACB=80° ,点 P 是 ⊙O 上一个动点(不与 D , E 两点重合),求 ∠DPE 的度数.
为了维护国家主权和海洋权利,我国海监部门对中国海域实现常态化管理.某日,我国海监船在某海岛附近的海域执行巡逻任务.如图,此时海监船位于海岛 P 的北偏东 30° 方向,距离海岛100海里的 A 处,它沿正南方向航行一段时间后,到达位于海岛 P 的南偏东 45° 方向的 B 处,求海监船航行了多少海里(结果保留根号)?
列方程解应用题
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮的传播就会有144台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?