如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) , B ( 5 , 0 ) .
(1)求 b , c 的值;
(2)连结 AB ,交抛物线 L 的对称轴于点 M .
①求点 M 的坐标;
②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M 作 MN / / y 轴,交抛物线 L 1 于点 N . P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P 作 PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.
如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F. (1)求证:△ABF≌△ECF; (2)若∠AFC=2∠ABC,连接AC、BE.求证:四边形ABEC是矩形.
解不等式组
化简-.
如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F. (1)试用含t的式子表示AE、AD的长; (2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由; (3)如图②,连接DE,当t为何值时,△DEF为直角三角形? (4)如图③,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?
观察下列等式: ①; ②; ③; …… 回答下列问题: (1)仿照上列等式,写出第n个等式:; (2)利用你观察到的规律,化简:; (3)计算: