如图,抛物线与轴交于,两点,与轴交于点,抛物线的顶点为.已知,.请答案下列问题:
(1)求抛物线的解析式,并直接写出点的坐标;
(2)抛物线的对称轴与轴交于点,连接,的垂直平分线交直线于点,则线段的长为 .
注:抛物线的对称轴是直线,顶点坐标是,.
已知抛物线经过点和点,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出顶点的坐标;
(2)如图,点,分别在线段,上(点不与点,重合),且,,直接写出线段的长.
如图,在平面直角坐标系中,抛物线 的顶点坐标为 ,与 轴交于点 ,与 轴交于点 、 .
(1)求二次函数 的表达式;
(2)过点 作 平行于 轴,交抛物线于点 ,点 为抛物线上的一点(点 在 上方),作 平行于 轴交 于点 ,问当点 在何位置时,四边形 的面积最大?并求出最大面积;
(3)若点 在抛物线上,点 在其对称轴上,使得以 、 、 、 为顶点的四边形是平行四边形,且 为其一边,求点 、 的坐标.
如图,在平面直角坐标系中,抛物线 与 轴交于点 ,与x轴交于 两点(点 在点 的左侧),且 点坐标为 ,直线 的解析式为 .
(1)求抛物线的解析式;
(2)过点 作 ,交抛物线于点D,点E为直线 上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线 向左平移 个单位,已知点 为抛物线 的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形 的面积最大时,是否存在以 为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
若二次函数图象的顶点在一次函数的图象上,则称为的伴随函数,如:是的伴随函数.
(1)若是的伴随函数,求直线与两坐标轴围成的三角形的面积;
(2)若函数的伴随函数与轴两个交点间的距离为4,求,的值.
已知抛物线,为常数).
(1)若抛物线的顶点坐标为,求,的值;
(2)若抛物线上始终存在不重合的两点关于原点对称,求的取值范围;
(3)在(1)的条件下,存在正实数,,当时,恰好,求,的值.
在平面直角坐标系中,顶点为的抛物线与轴交于、两点,与轴交于点,已知,.
(1)求抛物线对应的二次函数表达式;
(2)探究:如图1,连接,作交的延长线于点,连接交于点,是的中点,则是否将四边形分成面积相等的两部分?请说明理由;
(3)应用:如图2,是抛物线在第四象限的图象上的点,且,连接、,在线段上确定一点,使平分四边形的面积,求点的坐标.
提示:若点、的坐标分别为,、,,则线段的中点坐标为,.
如图,已知抛物线 的图象的顶点坐标是 ,并且经过点 ,直线 与抛物线交于 , 两点,以 为直径作圆,圆心为点 ,圆 与直线 交于对称轴右侧的点 ,直线 上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆 与 轴相切;
(3)过点 作 ,垂足为 ,再过点 作 ,垂足为 ,求 的值.
如图一,抛物线过、、三点.
(1)求该抛物线的解析式;
(2),、两点均在该抛物线上,若,求点横坐标的取值范围;
(3)如图二,过点作轴的平行线交抛物线于点,该抛物线的对称轴与轴交于点,连结、,点为线段的中点,点、分别为直线和上的动点,求周长的最小值.
如图,二次函数的图象与轴交于点和点,与轴交于点,以为边在轴上方作正方形,点是轴上一动点,连接,过点作的垂线与轴交于点.
(1)求该抛物线的函数关系表达式;
(2)当点在线段(点不与、重合)上运动至何处时,线段的长有最大值?并求出这个最大值;
(3)在第四象限的抛物线上任取一点,连接、.请问:的面积是否存在最大值?若存在,求出此时点的坐标;若不存在,请说明理由.
如图,已知二次函数图象的顶点坐标为,与坐标轴交于、、三点,且点的坐标为.
(1)求二次函数的解析式;
(2)在二次函数图象位于轴上方部分有两个动点、,且点在点的左侧,过、作轴的垂线交轴于点、两点,当四边形为矩形时,求该矩形周长的最大值;
(3)当矩形的周长最大时,能否在二次函数图象上找到一点,使的面积是矩形面积的?若存在,求出该点的横坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,矩形 的边 、 分别在 轴、 轴上,点 坐标为 , ,二次函数 的图象经过点 ,顶点为点 .
(1)当 时,顶点 到 轴的距离等于 ;
(2)点 是二次函数 的图象与 轴的一个公共点(点 与点 不重合),求 的最大值及取得最大值时的二次函数表达式;
(3)矩形 的对角线 、 交于点 ,直线 平行于 轴,交二次函数 的图象于点 、 ,连接 、 ,当 时,求 的值.
已知,在平面直角坐标系中,抛物线 的顶点为 .点 的坐标为 .
(1)求抛物线过点 时顶点 的坐标;
(2)点 的坐标记为 ,求 与 的函数表达式;
(3)已知 点的坐标为 ,当 取何值时,抛物线 与线段 只有一个交点.
如图,在平面直角坐标系 中,抛物线 交 轴于 , 两点(点 在点 的左侧),将该抛物线位于 轴上方曲线记作 ,将该抛物线位于 轴下方部分沿 轴翻折,翻折后所得曲线记作 ,曲线 交 轴于点 ,连接 、 .
(1)求曲线 所在抛物线相应的函数表达式;
(2)求 外接圆的半径;
(3)点 为曲线 或曲线 上的一动点,点 为 轴上的一个动点,若以点 , , , 为顶点的四边形是平行四边形,求点 的坐标.