如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + 4 与 x 轴交于 A , B 两点,与 y 轴交于点 C ,且 OB = OC ,过点 C 作 CD ⊥ y 轴交抛物线于点 D ,过点 D 作 DE ⊥ x 轴,垂足点为 E , tan ∠ ACO = 1 2 .
(1)求抛物线的解析式;
(2)直线 l 经过 A , C 两点,将直线 l 向右平移,平移过程中,直线 l 与 y 轴,直线 CD 分别交于点 M , N ,将 ΔCMN 沿直线 MN 折叠,点 C 的对应点 F 落在线段 DE 上.
①请求出 ΔFMN 的面积;
②点 P 为抛物线上的点,若 S ΔPMN = S ΔFMN ,请直接写出满足条件的点 P 的坐标.
如图,已知扇形AOB的半径为12,OA⊥OB,C为OB上一点,以OA为直径的半圆O1与以BC为直径的半圆O2相切于点D.求图中阴影部分面积.
如图6,从点P向⊙O引两条切线PA,PB,切点为A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm,求AC的长.
如图,抛物线经过、两点,与轴交于另一点.求抛物线的解析式已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.
在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点的横坐标,第二个数作为点的纵坐标,则点在反比例函数的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?试用列表或画树状图的方法列举出所有点的情形;分别求出点在两个反比例函数的图象上的概率,并说明谁的观点正确.
据交管部门统计,高速公路超速行驶是引发交通事故的主要原因.我县某校数学课外小组的几个同学想尝试用自己所学的知识检测车速,渝黔高速公路某路段的限速是:每小时80千米(即最高时速不超过80千米),如图,他们将观测点设在到公路l的距离为0.1千米的P处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A处行驶到B处所用的时间为3秒(注:3秒=小时),并测得∠APO=59°,∠BPO=45°.试计算AB并判断此车是否超速?(精确到0.001).(参考数据:sin59°≈0.8572,cos59°≈0.5150,tan59°≈1.6643)