如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。 (1)点A、B、C的坐标分别为 、 、 。 (2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形; (3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,若存在,请求出点P的坐标;若不存在,请说明理由。
某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的表达式.(2)当气体体积为1 m3时,气压是多少?(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
已知,如图,AB、DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影EF.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.
“一方有难,八方支援”.今年11月2日,某县出现洪涝灾害,牵动着全县人民的心,县人民医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援防汛救灾工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.
在△ABC中,AB=AC,BD=CD,CE⊥AB于E,求证:△ABD∽△CBE A
解方程: (1)(x+8)(x+1)=-12 (2)x(5x+4)=5x+4