已知:如图,抛物线 y = a x 2 + 4 x + c 经过原点 O ( 0 , 0 ) 和点 A ( 3 , 3 ) , P 为抛物线上的一个动点,过点 P 作 x 轴的垂线,垂足为 B ( m , 0 ) ,并与直线 OA 交于点 C .
(1)求抛物线的解析式;
(2)当点 P 在直线 OA 上方时,求线段 PC 的最大值;
(3)过点 A 作 AD ⊥ x 轴于点 D ,在抛物线上是否存在点 P ,使得以 P 、 A 、 C 、 D 四点为顶点的四边形是平行四边形?若存在,求 m 的值;若不存在,请说明理由.
已知y=(m-4)x+2x-3是二次函数,求m的值。
老师在同一直角坐标系中画了一个反比例函数的图象以及正比例函数y=-x的图象,请同学们观察,并说出来.同学甲:与直线y=-x有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为5.请根据以上信息,写出反比例函数的解析式.
若反比例函数图象经过点(-1,2),试问点(4,-2)是否在这个函数的图象上?为什么?
如图是反比例函数的图象在第一象限的部分曲线,P为曲线上任意一点,PM垂直x轴于点M,求△OPM的面积(用k的代数式表示).
画出反比例函数的图象.