如图,抛物线y=-x2+mx+2与x轴交于A,B两点,与y轴交于C点,点A的坐标为(1,0).
(1)求抛物线的解析式;
(2)在抛物线的对称轴l上找一点P,使PA+PC的值最小.并求出P点坐标;
(3)在第二象限内的抛物线上,是否存在点M,使得ΔMBC的面积是ΔABC面积的一半?若存在,求出点M的坐标,若不存在,请说明理由.
计算 (1) (2) (3)
如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由. 解:∵∠1=∠2(已知),∠2=∠DGF() ∴∠1=∠DGF ∴BD∥CE() ∴∠3+∠C=180º() 又∵∠3=∠4(已知) ∴∠4+∠C=180º ∴ ∥ (同旁内角互补,两直线平行) ∴∠A=∠F()
某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成;乙种盆景由10朵红花、12朵黄花搭配而成;丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.
如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P、Q为AB边及BC边上的两个动点。(1)若点P从点A沿AB边向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿BC边向点C以2cm/s的速度移动,两个点同时出发。 ①经过几秒,△PBQ的面积等于8cm2; ②是否存在这样的时刻,使△PBQ的面积等于10 cm2?如果存在请求出来,如果不存在,请说明理由。 (2)假设点P、Q可以分别在AB、BC边上任意移动,是否存在PQ同时平分△ABC的周长和面积的情况?如果存在请求出BP的长度;如果不存在,请说明理由。
如图,在平行四边形ABCD中,BD=2AB,AC与BD相交于点O,点E、F、G分别是OC、OB、AD的中点. 求证:(1)DE⊥OC; (2)EG=EF.