初中数学

阅读下面的材料:

如果函数 y = f ( x ) 满足:对于自变量 x 取值范围内的任意 x 1 x 2

(1)若 x 1 < x 2 ,都有 f ( x 1 ) < f ( x 2 ) ,则称 f ( x ) 是增函数;

(2)若 x 1 < x 2 ,都有 f ( x 1 ) > f ( x 2 ) ,则称 f ( x ) 是减函数.

例题:证明函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

证明:任取 x 1 < x 2 ,且 x 1 > 0 x 2 > 0

f ( x 1 ) - f ( x 2 ) = x 1 2 - x 2 2 = ( x 1 + x 2 ) ( x 1 - x 2 )

x 1 < x 2 x 1 > 0 x 2 > 0

x 1 + x 2 > 0 x 1 - x 2 < 0

( x 1 + x 2 ) ( x 1 - x 2 ) < 0 ,即 f ( x 1 ) - f ( x 2 ) < 0 f ( x 1 ) < f ( x 2 )

函数 f ( x ) = x 2 ( x > 0 ) 是增函数.

根据以上材料解答下列问题:

(1)函数 f ( x ) = 1 x ( x > 0 ) f (1) = 1 1 = 1 f (2) = 1 2 f (3) =    f (4) =   

(2)猜想 f ( x ) = 1 x ( x > 0 )   函数(填“增”或“减” ) ,并证明你的猜想.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线 y = 1 4 x 2 - x - 3 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .直线 l 与抛物线交于 A D 两点,与 y 轴交于点 E ,点 D 的坐标为 ( 4 , - 3 )

(1)请直接写出 A B 两点的坐标及直线 l 的函数表达式;

(2)若点 P 是抛物线上的点,点 P 的横坐标为 m ( m 0 ) ,过点 P PM x 轴,垂足为 M PM 与直线 l 交于点 N ,当点 N 是线段 PM 的三等分点时,求点 P 的坐标;

(3)若点 Q y 轴上的点,且 ADQ = 45 ° ,求点 Q 的坐标.

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 4 ( a 0 ) 的图象经过点 A ( 4 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上一点,连接 BP AC ,交于点 Q ,过点 P PD x 轴于点 D

(1)求二次函数的表达式;

(2)连接 BC ,当 DPB = 2 BCO 时,求直线 BP 的表达式;

(3)请判断: PQ QB 是否有最大值,如有请求出有最大值时点 P 的坐标,如没有请说明理由.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 C : y = a x 2 + bx + c ( a 0 ) 经过点 ( 1 , 1 ) ( 4 , 1 )

(1)求抛物线 C 的对称轴.

(2)当 a = - 1 时,将抛物线 C 向左平移2个单位,再向下平移1个单位,得到抛物线 C 1

①求抛物线 C 1 的解析式.

②设抛物线 C 1 x 轴交于 A B 两点(点 A 在点 B 的右侧),与 y 轴交于点 C ,连接 BC .点 D 为第一象限内抛物线 C 1 上一动点,过点 D DE OA 于点 E .设点 D 的横坐标为 m .是否存在点 D ,使得以点 O D E 为顶点的三角形与 ΔBOC 相似,若存在,求出 m 的值;若不存在,请说明理由.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知:如图,一次函数 y = kx 1 的图象经过点 A ( 3 5 m ) ( m > 0 ) ,与 y 轴交于点 B .点 C 在线段 AB 上,且 BC = 2 AC ,过点 C x 轴的垂线,垂足为点 D .若 AC = CD

(1)求这个一次函数的表达式;

(2)已知一开口向下、以直线 CD 为对称轴的抛物线经过点 A ,它的顶点为 P ,若过点 P 且垂直于 AP 的直线与 x 轴的交点为 Q ( 4 5 5 0 ) ,求这条抛物线的函数表达式.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,二次函数 y = 1 2 x 2 + bx + c 的图象与 x 轴交于 A ( - 2 , 0 ) B ( 4 , 0 ) 两点,交 y 轴于点 C ,点 P 是第四象限内抛物线上的一个动点.

(1)求二次函数的解析式;

(2)如图甲,连接 AC PA PC ,若 S ΔPAC = 15 2 ,求点 P 的坐标;

(3)如图乙,过 A B P 三点作 M ,过点 P PE x 轴,垂足为 D ,交 M 于点 E .点 P 在运动过程中线段 DE 的长是否变化,若有变化,求出 DE 的取值范围;若不变,求 DE 的长.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知关于 x 的二次函数 y 1 = x 2 + bx + c (实数 b c 为常数).

(1)若二次函数的图象经过点 ( 0 , 4 ) ,对称轴为 x = 1 ,求此二次函数的表达式;

(2)若 b 2 - c = 0 ,当 b - 3 x b 时,二次函数的最小值为21,求 b 的值;

(3)记关于 x 的二次函数 y 2 = 2 x 2 + x + m ,若在(1)的条件下,当 0 x 1 时,总有 y 2 y 1 ,求实数 m 的最小值.

来源:2021年湖南省永州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,二次函数 y = 1 3 x 2 + bx + 2 的图象与 x 轴交于点 A B ,与 y 轴交于点 C ,点 A 的坐标为 ( 4 , 0 ) P 是抛物线上一点(点 P 与点 A B C 不重合).

(1) b =   ,点 B 的坐标是  

(2)设直线 PB 与直线 AC 相交于点 M ,是否存在这样的点 P ,使得 PM : MB = 1 : 2 ?若存在,求出点 P 的横坐标;若不存在,请说明理由;

(3)连接 AC BC ,判断 CAB CBA 的数量关系,并说明理由.

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在等腰直角三角形 ABC 中, BAC = 90 ° ,点 A x 轴上,点 B y 轴上,点 C ( 3 , 1 ) ,二次函数 y = 1 3 x 2 + bx 3 2 的图象经过点 C

(1)求二次函数的解析式,并把解析式化成 y = a ( x h ) 2 + k 的形式;

(2)把 ΔABC 沿 x 轴正方向平移,当点 B 落在抛物线上时,求 ΔABC 扫过区域的面积;

(3)在抛物线上是否存在异于点 C 的点 P ,使 ΔABP 是以 AB 为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点 P 的坐标;如果不存在,请说明理由.

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = a x 2 + bx + 3 的图象与 x 轴分别交于 A ( 1 , 0 ) B ( 3 , 0 ) 两点,与 y 轴交于点 C

(1)求此二次函数解析式;

(2)点 D 为抛物线的顶点,试判断 ΔBCD 的形状,并说明理由;

(3)将直线 BC 向上平移 t ( t > 0 ) 个单位,平移后的直线与抛物线交于 M N 两点(点 M y 轴的右侧),当 ΔAMN 为直角三角形时,求 t 的值.

来源:2018年四川省甘孜州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx ( a 0 ) 过点 A ( 3 3 ) 和点 B ( 3 3 0 ) .过点 A 作直线 AC / / x 轴,交 y 轴于点 C

(1)求抛物线的解析式;

(2)在抛物线上取一点 P ,过点 P 作直线 AC 的垂线,垂足为 D .连接 OA ,使得以 A D P 为顶点的三角形与 ΔAOC 相似,求出对应点 P 的坐标;

(3)抛物线上是否存在点 Q ,使得 S ΔAOC = 1 3 S ΔAOQ ?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

小贤与小杰在探究某类二次函数问题时,经历了如下过程:

求解体验:

(1)已知抛物线 y = x 2 + bx 3 经过点 ( 1 , 0 ) ,则 b =   ,顶点坐标为  ,该抛物线关于点 ( 0 , 1 ) 成中心对称的抛物线表达式是  

抽象感悟:

我们定义:对于抛物线 y = a x 2 + bx + c ( a 0 ) ,以 y 轴上的点 M ( 0 , m ) 为中心,作该抛物线关于点 M 中心对称的抛物线 y ' ,则我们又称抛物线 y ' 为抛物线 y 的“衍生抛物线”,点 M 为“衍生中心”.

(2)已知抛物线 y = x 2 2 x + 5 关于点 ( 0 , m ) 的衍生抛物线为 y ' ,若这两条抛物线有交点,求 m 的取值范围.

问题解决:

(3)已知抛物线 y = a x 2 + 2 ax b ( a 0 )

①若抛物线 y 的衍生抛物线为 y ' = b x 2 2 bx + a 2 ( b 0 ) ,两抛物线有两个交点,且恰好是它们的顶点,求 a b 的值及衍生中心的坐标;

②若抛物线 y 关于点 ( 0 , k + 1 2 ) 的衍生抛物线为 y 1 ,其顶点为 A 1 ;关于点 ( 0 , k + 2 2 ) 的衍生抛物线为 y 2 ,其顶点为 A 2 ;关于点 ( 0 , k + n 2 ) 的衍生抛物线为 y n ,其顶点为 A n ( n 为正整数).求 A n A n + 1 的长(用含 n 的式子表示).

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图①,在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) B ( 3 , 0 ) 两点,且与 y 轴交于点 C

(1)求抛物线的表达式;

(2)如图②,用宽为4个单位长度的直尺垂直于 x 轴,并沿 x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 P Q 两点(点 P 在点 Q 的左侧),连接 PQ ,在线段 PQ 上方抛物线上有一动点 D ,连接 DP DQ

(Ⅰ)若点 P 的横坐标为 1 2 ,求 ΔDPQ 面积的最大值,并求此时点 D 的坐标;

(Ⅱ)直尺在平移过程中, ΔDPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.

来源:2018年江苏省盐城市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图1(注:与图2完全相同)所示,抛物线 y = - 1 2 x 2 + bx + c 经过 B D 两点,与 x 轴的另一个交点为 A ,与 y 轴相交于点 C

(1)求抛物线的解析式.

(2)设抛物线的顶点为 M ,求四边形 ABMC 的面积.(请在图1中探索)

(3)设点 Q y 轴上,点 P 在抛物线上.要使以点 A B P Q 为顶点的四边形是平行四边形,求所有满足条件的点 P 的坐标.(请在图2中探索)

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,平行四边形 ABCD AB 边与 y 轴交于 E 点, F AD 的中点, B C D 的坐标分别为 ( - 2 , 0 ) ( 8 , 0 ) ( 13 , 10 )

(1)求过 B E C 三点的抛物线的解析式;

(2)试判断抛物线的顶点是否在直线 EF 上;

(3)设过 F AB 平行的直线交 y 轴于 Q M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P ,当 ΔPBQ 的面积最大时,求 P 的坐标.

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题