阅读下面的材料:
如果函数 满足:对于自变量 取值范围内的任意 , ,
(1)若 ,都有 ,则称 是增函数;
(2)若 ,都有 ,则称 是减函数.
例题:证明函数 是增函数.
证明:任取 ,且 , .
则 .
且 , ,
, .
,即 , .
函数 是增函数.
根据以上材料解答下列问题:
(1)函数 , (1) , (2) , (3) , (4) ;
(2)猜想 是 函数(填“增”或“减” ,并证明你的猜想.
综合与探究
如图,抛物线 与 轴交于 , 两点(点 在点 的左侧),与 轴交于点 .直线 与抛物线交于 , 两点,与 轴交于点 ,点 的坐标为 .
(1)请直接写出 , 两点的坐标及直线 的函数表达式;
(2)若点 是抛物线上的点,点 的横坐标为 ,过点 作 轴,垂足为 . 与直线 交于点 ,当点 是线段 的三等分点时,求点 的坐标;
(3)若点 是 轴上的点,且 ,求点 的坐标.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
在平面直角坐标系中,二次函数 的图象与 轴交于 , 两点,交 轴于点 ,点 是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接 , , ,若 ,求点 的坐标;
(3)如图乙,过 , , 三点作 ,过点 作 轴,垂足为 ,交 于点 .点 在运动过程中线段 的长是否变化,若有变化,求出 的取值范围;若不变,求 的长.
已知关于 的二次函数 (实数 , 为常数).
(1)若二次函数的图象经过点 ,对称轴为 ,求此二次函数的表达式;
(2)若 ,当 时,二次函数的最小值为21,求 的值;
(3)记关于 的二次函数 ,若在(1)的条件下,当 时,总有 ,求实数 的最小值.
如图,二次函数 的图象与 轴交于点 、 ,与 轴交于点 ,点 的坐标为 , 是抛物线上一点(点 与点 、 、 不重合).
(1) ,点 的坐标是 ;
(2)设直线 与直线 相交于点 ,是否存在这样的点 ,使得 ?若存在,求出点 的横坐标;若不存在,请说明理由;
(3)连接 、 ,判断 和 的数量关系,并说明理由.
如图,在等腰直角三角形 中, ,点 在 轴上,点 在 轴上,点 ,二次函数 的图象经过点 .
(1)求二次函数的解析式,并把解析式化成 的形式;
(2)把 沿 轴正方向平移,当点 落在抛物线上时,求 扫过区域的面积;
(3)在抛物线上是否存在异于点 的点 ,使 是以 为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点 的坐标;如果不存在,请说明理由.
如图,已知二次函数 的图象与 轴分别交于 , 两点,与 轴交于点
(1)求此二次函数解析式;
(2)点 为抛物线的顶点,试判断 的形状,并说明理由;
(3)将直线 向上平移 个单位,平移后的直线与抛物线交于 , 两点(点 在 轴的右侧),当 为直角三角形时,求 的值.
如图,已知抛物线 过点 , 和点 , .过点 作直线 轴,交 轴于点 .
(1)求抛物线的解析式;
(2)在抛物线上取一点 ,过点 作直线 的垂线,垂足为 .连接 ,使得以 , , 为顶点的三角形与 相似,求出对应点 的坐标;
(3)抛物线上是否存在点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验:
(1)已知抛物线 经过点 ,则 ,顶点坐标为 ,该抛物线关于点 成中心对称的抛物线表达式是 .
抽象感悟:
我们定义:对于抛物线 ,以 轴上的点 为中心,作该抛物线关于点 中心对称的抛物线 ,则我们又称抛物线 为抛物线 的“衍生抛物线”,点 为“衍生中心”.
(2)已知抛物线 关于点 的衍生抛物线为 ,若这两条抛物线有交点,求 的取值范围.
问题解决:
(3)已知抛物线
①若抛物线 的衍生抛物线为 ,两抛物线有两个交点,且恰好是它们的顶点,求 、 的值及衍生中心的坐标;
②若抛物线 关于点 的衍生抛物线为 ,其顶点为 ;关于点 的衍生抛物线为 ,其顶点为 ; ;关于点 的衍生抛物线为 ,其顶点为 为正整数).求 的长(用含 的式子表示).
如图①,在平面直角坐标系 中,抛物线 经过点 、 两点,且与 轴交于点 .
(1)求抛物线的表达式;
(2)如图②,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 、 两点(点 在点 的左侧),连接 ,在线段 上方抛物线上有一动点 ,连接 、 .
(Ⅰ)若点 的横坐标为 ,求 面积的最大值,并求此时点 的坐标;
(Ⅱ)直尺在平移过程中, 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.
如图1(注:与图2完全相同)所示,抛物线 经过 、 两点,与 轴的另一个交点为 ,与 轴相交于点 .
(1)求抛物线的解析式.
(2)设抛物线的顶点为 ,求四边形 的面积.(请在图1中探索)
(3)设点 在 轴上,点 在抛物线上.要使以点 、 、 、 为顶点的四边形是平行四边形,求所有满足条件的点 的坐标.(请在图2中探索)