如图①,在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx + 3 经过点 A ( − 1 , 0 ) 、 B ( 3 , 0 ) 两点,且与 y 轴交于点 C .
(1)求抛物线的表达式;
(2)如图②,用宽为4个单位长度的直尺垂直于 x 轴,并沿 x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 P 、 Q 两点(点 P 在点 Q 的左侧),连接 PQ ,在线段 PQ 上方抛物线上有一动点 D ,连接 DP 、 DQ .
(Ⅰ)若点 P 的横坐标为 − 1 2 ,求 ΔDPQ 面积的最大值,并求此时点 D 的坐标;
(Ⅱ)直尺在平移过程中, ΔDPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.
已知一次函数的图象经过点(3,5)与(-4,-9). (1)求这个函数的解析式; (2)判断点A(1,-1)和点B(2.5,4)是否在这个函数的图象上.
△ABC在平面直角坐标系中的位置如右图所示. (1)直接写出点A的坐标; (2)作出△ABC关于轴对称的△,并分别写出点,B1,C1的坐标
(1)解方程:;(2)
老王带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一 些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题. (1)老王自带的零钱是多少? (2)试求降价前y与x之间的关系式. (3)由表达式你能求出降价前每千克的土豆价格是多少? (4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F. (1)求证:OE是CD的垂直平分线. (2)若∠AOB=60º,请你探究OE,EF之间有什么数量关系?并证明你的结论.