如图①,在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx + 3 经过点 A ( − 1 , 0 ) 、 B ( 3 , 0 ) 两点,且与 y 轴交于点 C .
(1)求抛物线的表达式;
(2)如图②,用宽为4个单位长度的直尺垂直于 x 轴,并沿 x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 P 、 Q 两点(点 P 在点 Q 的左侧),连接 PQ ,在线段 PQ 上方抛物线上有一动点 D ,连接 DP 、 DQ .
(Ⅰ)若点 P 的横坐标为 − 1 2 ,求 ΔDPQ 面积的最大值,并求此时点 D 的坐标;
(Ⅱ)直尺在平移过程中, ΔDPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.
如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是 ,(2)若∠1=60°,求∠3的度数;(3)若AB=4,AD=8,求BE的长度.
已知:如图,点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上. (1) 在图中画出与关于直线成轴对称的△A'B'C';(2) 线段CC'被直线 ;(3)△ABC的面积为_______________;
如下图,有公路同侧、异侧的两个城镇A、B,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条公路、的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置。(保留作图痕迹,不写作法)
(本题12分)在△ABC中, AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为: .(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.(3)如图3,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13、10、17,①试说明△PQR、△BCR、△DEQ、△AFP的面积相等;②请利用第2小题解题方法求六边形花坛ABCDEF的面积.