如图1(注:与图2完全相同)所示,抛物线 y = - 1 2 x 2 + bx + c 经过 B 、 D 两点,与 x 轴的另一个交点为 A ,与 y 轴相交于点 C .
(1)求抛物线的解析式.
(2)设抛物线的顶点为 M ,求四边形 ABMC 的面积.(请在图1中探索)
(3)设点 Q 在 y 轴上,点 P 在抛物线上.要使以点 A 、 B 、 P 、 Q 为顶点的四边形是平行四边形,求所有满足条件的点 P 的坐标.(请在图2中探索)
在平面直角坐标系中,函数的图象经过点,直线与图象交于点,与轴交于点.
(1)求的值;
(2)横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
如图,是的直径,过外一点作的两条切线,,切点分别为,,连接,.
(1)求证:;
(2)连接,,若,,,求的长.
如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.
(1)求证:四边形是菱形;
(2)若,,求的长.
关于的一元二次方程.
(1)当时,利用根的判别式判断方程根的情况;
(2)若方程有两个相等的实数根,写出一组满足条件的,的值,并求此时方程的根.
下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线及直线外一点.
求作:直线,使得.
作法:如图,
①在直线上取一点,作射线,以点为圆心,长为半径画弧,交的延长线于点;
②在直线上取一点(不与点重合),作射线,以点为圆心,长为半径画弧,交的延长线于点;
③作直线.所以直线就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明: , ,
(填推理的依据).