如图1(注:与图2完全相同)所示,抛物线 y = - 1 2 x 2 + bx + c 经过 B 、 D 两点,与 x 轴的另一个交点为 A ,与 y 轴相交于点 C .
(1)求抛物线的解析式.
(2)设抛物线的顶点为 M ,求四边形 ABMC 的面积.(请在图1中探索)
(3)设点 Q 在 y 轴上,点 P 在抛物线上.要使以点 A 、 B 、 P 、 Q 为顶点的四边形是平行四边形,求所有满足条件的点 P 的坐标.(请在图2中探索)
如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线y=(x>0)交于D点,过点D作DC⊥x轴,垂足为G,连接OD.已知△AOB≌△ACD.(1)如果b=﹣2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式.
如图,在平面直角坐标系中,反比例函数(x>0)的图象和矩形ABCD的第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.
如图,已知一次函数与反比例函数的图象交于A(2,4)、B(﹣4,n)两点.(1)分别求出和的解析式;(2)求=时,x的值;(3)根据图象直接写出>时,x的取值范围.
某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(万件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3。写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式。并给出自变量x的取值范围。