阅读下面的材料:
如果函数 y = f ( x ) 满足:对于自变量 x 取值范围内的任意 x 1 , x 2 ,
(1)若 x 1 < x 2 ,都有 f ( x 1 ) < f ( x 2 ) ,则称 f ( x ) 是增函数;
(2)若 x 1 < x 2 ,都有 f ( x 1 ) > f ( x 2 ) ,则称 f ( x ) 是减函数.
例题:证明函数 f ( x ) = x 2 ( x > 0 ) 是增函数.
证明:任取 x 1 < x 2 ,且 x 1 > 0 , x 2 > 0 .
则 f ( x 1 ) - f ( x 2 ) = x 1 2 - x 2 2 = ( x 1 + x 2 ) ( x 1 - x 2 ) .
∵ x 1 < x 2 且 x 1 > 0 , x 2 > 0 ,
∴ x 1 + x 2 > 0 , x 1 - x 2 < 0 .
∴ ( x 1 + x 2 ) ( x 1 - x 2 ) < 0 ,即 f ( x 1 ) - f ( x 2 ) < 0 , f ( x 1 ) < f ( x 2 ) .
∴ 函数 f ( x ) = x 2 ( x > 0 ) 是增函数.
根据以上材料解答下列问题:
(1)函数 f ( x ) = 1 x ( x > 0 ) , f (1) = 1 1 = 1 , f (2) = 1 2 , f (3) = , f (4) = ;
(2)猜想 f ( x ) = 1 x ( x > 0 ) 是 函数(填“增”或“减” ) ,并证明你的猜想.
如图,海上有一个小岛P,它的周围12海里有暗礁,渔船由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东行驶,有没有触礁的危险,通过计算说明。
已知:抛物线的图象经过原点,且开口向上. 确定m的值; 求此抛物线的顶点坐标; 当x取什么值时,y随x的增大而增大? 当x取什么值时,y<0?
已知二次函数y= x2 +4x+3. (1)用配方法将y= x2 +4x+3化成y=a (x-h) 2 +k的形式; (2)在平面直角坐标系中,画出这个二次函数的图象; (3)写出当x为何值时,y>0.
如图,,,,. (1)求的长; (2)求的值.
如图,是⊙O的直径,弦BC=8,∠BOC=60°, OE⊥AC,垂足为E. (1)求OE的长; (2)求劣弧AC的长.