在平面直角坐标系中,二次函数 y = 1 2 x 2 + bx + c 的图象与 x 轴交于 A ( - 2 , 0 ) , B ( 4 , 0 ) 两点,交 y 轴于点 C ,点 P 是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接 AC , PA , PC ,若 S ΔPAC = 15 2 ,求点 P 的坐标;
(3)如图乙,过 A , B , P 三点作 ⊙ M ,过点 P 作 PE ⊥ x 轴,垂足为 D ,交 ⊙ M 于点 E .点 P 在运动过程中线段 DE 的长是否变化,若有变化,求出 DE 的取值范围;若不变,求 DE 的长.
如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标是(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,求C的坐标.
如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标我(4,-1).(1)把△ABC向上平移5个单位后得到对应的△,画出△的图形并写出点的坐标;(2)以原点O为对称中心,再画出与△关于原点对称的△,并写出点的坐标.
某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元,从2006年到2008年,如果该企业每年盈利的增长率相同.(1) 该企业2007年盈利多少万元?(2) 若该企业盈利的年增长率不变,预计2009年盈利多少万元?
如图,ABCD是⊙O的两条弦,延长AB、CD交于点P,连接AD、BC交于点E,∠P=30°,∠ABC=50°,求∠A的度数.
如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P、Q同时由AB两点出发,分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,多少时间后△PCQ的面积是Rt△ACB面积的一半?