如图,已知二次函数 的图象与 轴交于 , 两点,与 轴交于点 ,直线 经过 , 两点.
(1)直接写出二次函数的解析式 ;
(2)平移直线 ,当直线 与抛物线有唯一公共点 时,求此时点 的坐标;
(3)过(2)中的点 作 轴,交 轴于点 .若点 是抛物线上一个动点,点 是 轴上一个动点,是否存在以 , , 三点为顶点的直角三角形(其中 为直角顶点)与 相似?如果存在,请直接写出满足条件的点 的个数和其中一个符合条件的点 的坐标;如果不存在,请说明理由.
如图,是将抛物线 平移后得到的抛物线,其对称轴为 ,与 轴的一个交点为 ,另一个交点为 ,与 轴的交点为 .
(1)求抛物线的函数表达式;
(2)若点 为抛物线上一点,且 ,求点 的坐标;
(3)点 是抛物线上一点,点 是一次函数 的图象上一点,若四边形 为平行四边形,这样的点 、 是否存在?若存在,分别求出点 、 的坐标;若不存在,说明理由.
如图,在平面直角坐标系中, 的顶点 是坐标原点,点 的坐标为 ,点 的坐标为 ,动点 从 开始以每秒1个单位长度的速度沿 轴正方向运动,设运动的时间为 秒 ,过点 作 轴,分别交 , 于点 , .
(1)填空: 的长为 , 的长为 ;
(2)当 时,求点 的坐标;
(3)请直接写出 的长为 (用含 的代数式表示);
(4)点 是线段 上一动点(点 不与点 , 重合), 和 的面积分别表示为 和 ,当 时,请直接写出 (即 与 的积)的最大值为 .
如图,在平面直角坐标系中,二次函数 的图象与 轴交于 、 两点,与 轴交于点 ,其顶点为 ,连接 、 、 ,过点 作 轴的垂线 .
(1)求点 , 的坐标;
(2)直线 上是否存在点 ,使 的面积等于 的面积的2倍?若存在,求出点 的坐标;若不存在,请说明理由.
平面直角坐标系 中,二次函数 的图象与 轴有两个交点.
(1)当 时,求二次函数的图象与 轴交点的坐标;
(2)过点 作直线 轴,二次函数图象的顶点 在直线 与 轴之间(不包含点 在直线 上),求 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 相交于点 ,求 的面积最大时 的值.
如图,二次函数 的图象与 轴正半轴交于点 ,平行于 轴的直线 与该抛物线交于 、 两点(点 位于点 左侧),与抛物线对称轴交于点 .
(1)求 的值;
(2)设 、 是 轴上的点(点 位于点 左侧),四边形 为平行四边形.过点 、 分别作 轴的垂线,与抛物线交于点 , 、 , .若 ,求 、 的值.
已知抛物线 经过 , , 三点,对称轴是直线 .关于 的方程 有两个相等的实数根.
(1)求抛物线的解析式;
(2)若 ,试比较 与 的大小;
(3)若 , 两点在直线 的两侧,且 ,求 的取值范围.
如图,在平面直角坐标系中,反比例函数的图象经过点,点在轴的负半轴上,交轴于点,为线段的中点.
(1) ,点的坐标为 ;
(2)若点为线段上的一个动点,过点作轴,交反比例函数图象于点,求面积的最大值.
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“函数”,其图象上关于原点对称的两点叫做一对“点”.根据该约定,完成下列各题.
(1)在下列关于的函数中,是“函数”的,请在相应题目后面的括号中打“”,不是“函数”的打“”.
① ;
② ;
③ .
(2)若点与点是关于的“函数” 的一对“点”,且该函数的对称轴始终位于直线的右侧,求,,的值或取值范围.
(3)若关于的“函数” ,,是常数)同时满足下列两个条件:①,②,求该“函数”截轴得到的线段长度的取值范围.
在平面直角坐标系 中,等腰直角 的直角顶点 在 轴上,另两个顶点 , 在 轴上,且 ,抛物线经过 , , 三点,如图1所示.
(1)求抛物线所表示的二次函数表达式.
(2)过原点任作直线 交抛物线于 , 两点,如图2所示.
①求 面积的最小值.
②已知 是抛物线上一定点,问抛物线上是否存在点 ,使得点 与点 关于直线 对称,若存在,求出点 的坐标及直线 的一次函数表达式;若不存在,请说明理由.
在平面直角坐标系 中,已知抛物线 为常数).
(1)若抛物线经过点 ,求 的值;
(2)若抛物线经过点 和点 ,且 ,求 的取值范围;
(3)若将抛物线向右平移1个单位长度得到新抛物线,当 时,新抛物线对应的函数有最小值 ,求 的值.