我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.
(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.
①y=2x( );
②y=mx(m≠0)( );
③y=3x-1( ).
(2)若点A(1,m)与点B(n,-4)是关于x的“H函数” y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.
(3)若关于x的“H函数” y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b-a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.
已知,,求代数式的值.
如果一元二次方程ax2+bx+c=0的两根x1、x2均为正数,且满足1<<2(其中x1>x2),那么称这个方程有“邻近根”. (1)判断方程是否有“邻近根”,并说明理由; (2)已知关于x的一元二次方程mx2-(m-1)x-1=0有“邻近根”,求m的取值范围.
如图,将平行四边形ABCD的边DC延长至点E,使CE=DC,连接AE,交BC于点F. (1)求证:△ABF≌△ECF; (2)连接AC、BE,则当∠AFC与∠D满足什么条件时,四边形ABEC是矩形?请说明理由.
如图,已知A(a,m)、B(2a,n)是反比例函数y=(k>0)与一次函数y=-x+b图象上的两个不同的交点,分别过A、B两点作x轴的垂线,垂足分别为C、D,连结OA、OB,若已知1≤a≤2,则求S△OAB的取值范围.
如图,已知菱形AOBD的A、B、D三点在⊙O上,延长BO至点P,交⊙O于点C,且BP=3OB. 求证:AP是⊙O的切线.