我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.
(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.
①y=2x( );
②y=mx(m≠0)( );
③y=3x-1( ).
(2)若点A(1,m)与点B(n,-4)是关于x的“H函数” y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.
(3)若关于x的“H函数” y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b-a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.
(本小题满分13分) (1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.直接写出线段AF与BD之间的数量关系. (2)类比猜想:如图②,当△ABC为以BC为斜边的等腰直角三角形,D是△ABC边BA上一动点(点D 与点B不重合),连接DC,以DC为斜边在BC上方作等腰直角△FDC,连接AF.请直接写出它们的数量关系. (3)深入探究: Ⅰ.如图③,当△ABC为以BC为底边的等腰三角形,D是△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为底边在BC上方作等腰△FDC,∠BC A=∠DCF,且∠B A C =,连接AF.线段AF与BD之间的有什么数量关系?证明你发现的结论; Ⅱ.如图④,当△ABC为任意三角形,D是△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作△FDC∽△ABC,且,连接AF.线段AF与BD之间的有什么数量关系?直接写出你发现的结论.
(本小题满分10分)小刚和小强相约晨练跑步,小刚比小强早1分钟离开家门,3分钟后迎面遇到从家跑来的小强.两人同路并行跑了2分钟后,决定进行长跑比赛,比赛时小刚的速度始终是180米/分,小强的速度始终是220米/分.下图是两人之间的距离y(米)与小刚离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题: (1)两人相遇之前,小刚的速度是米/分,小强的速度是米/分; (2)求两人比赛过程中y与x之间的函数关系式;
(本小题满分10分)如图,AB是⊙O的直径,D为⊙O上一点,过上一点T作⊙O的切线TC,且TC ⊥AD于点C. (1)若∠DAB=50°,求∠ATC的度数; (2)若⊙O半径为2,CT=,求AD的长.
(本小题满分8分)如图,抛物线的对称轴为直线,与轴交于A,B两点,与y轴交于点C(0,4). (1)求抛物线的解析式,结合图象直接写出当0≤x≤4时y的取值范围; (2)已知点D(m,m+1)在第一象限的抛物线上,点D关于直线BC的对称点为点E,求点E的坐标.
(本小题满分8分)如图,湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请求出小桥PD的长.