如图,点 E 与树 AB 的根部点 A 、建筑物 CD 的底部点 C 在一条直线上, A C = 10 m .小明站在点 E 处观测树顶 B 的仰角为 30 ° ,他从点 E 出发沿 EC 方向前进 6 m 到点 G 时,观测树顶 B 的仰角为 45 ° ,此时恰好看不到建筑物 CD 的顶部 D ( H 、 B 、 D 三点在一条直线上).已知小明的眼睛离地面 1 . 6 m ,求建筑物 CD 的高度(结果精确到 0 . 1 m ).(参考数据: 2 ≈ 1 . 41 , 3 ≈ 1 . 73 .)
△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于E、F,给出以下四个结论:①AE=CF ②△EPF是等腰直角三角形③EF=AP ④S四边形AEPF= S△ABC当∠EPF在△ABC内绕P旋转时(点E不与A、B重合)则上述结论始终正确的有( )A.1个 B.2个 C.3个 D.4个
(本题12分)如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,(1)求证:AC是⊙O的切线;(2)求弦BD的长;(3)求图中阴影部分的面积.
(本题10分)抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点. (1)求出m的值.(2)求它与x轴的交点和抛物线顶点的坐标.(3)x取值什么值时,抛物线在x轴上方?
(本题9分)已知关于x的方程x2+ax+a-2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
(本题8分)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.