智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号" "有刚毅的含义,符号" "有愉快的含义.符号中的" "表示"阴"," "表示"阳",类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.
( 1 )所有这些三行符号共有 种;
( 2 )若随机画一个这样的三行符号,求"画出含有一个阴和两个阳的三行符号"的概率.
解方程: (1)(2)
已知直线y=x+6交x轴于点A,交y轴于点C,经过A和原点O的抛物线y=ax2+bx(a<0)的顶点B在直线AC上. (1)求抛物线的函数关系式; (2)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并说明理由; (3)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA︰∠AEO=2︰3,若存在,试求出点M的坐标;若不存在,试说明理由.
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:. (1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
如图,是的内接三角形,,为中上一点,延长至点,使. (1)求证:; (2)若,求证:.
某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30°方向,又航行了半小时到D处,望见灯塔C恰在西北方向,若船速为每小时20海里. 求A、D两点间的距离.