初中数学

如图抛物线 yax 2+ bx+ c经过点 A(﹣1,0),点 C(0,3),且 OBOC

(1)求抛物线的解析式及其对称轴;

(2)点 DE在直线 x=1上的两个动点,且 DE=1,点 D在点 E的上方,求四边形 ACDE的周长的最小值.

(3)点 P为抛物线上一点,连接 CP,直线 CP把四边形 CBPA的面积分为3:5两部分,求点 P的坐标.

来源:2019年广东省深圳市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知点 A ( 1 , 2 ) B ( 2 , 3 ) C ( 2 , 1 ) ,直线 y = x + m 经过点 A ,抛物线 y = a x 2 + bx + 1 恰好经过 A B C 三点中的两点.

(1)判断点 B 是否在直线 y = x + m 上,并说明理由;

(2)求 a b 的值;

(3)平移抛物线 y = a x 2 + bx + 1 ,使其顶点仍在直线 y = x + m 上,求平移后所得抛物线与 y 轴交点纵坐标的最大值.

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c y 轴交于点 A ( 0 , 2 ) ,对称轴为直线 x = 2 ,平行于 x 轴的直线与抛物线交于 B C 两点,点 B 在对称轴左侧, BC = 6

(1)求此抛物线的解析式.

(2)点 P x 轴上,直线 CP ΔABC 面积分成 2 : 3 两部分,请直接写出 P 点坐标.

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,已知顶点为 C(0,﹣3)的抛物线 yax 2+ ba≠0)与 x轴交于 AB两点,直线 yx+ m过顶点 C和点 B

(1)求 m的值;

(2)求函数 yax 2+ ba≠0)的解析式;

(3)抛物线上是否存在点 M,使得∠ MCB=15°?若存在,求出点 M的坐标;若不存在,请说明理由.

来源:2018年广东省中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 经过 A ( 1 , 0 ) B ( 3 , 0 ) 两点,交 y 轴于点 C ,点 D 为抛物线的顶点,连接 BD ,点 H BD 的中点.请解答下列问题:

(1)求抛物线的解析式及顶点 D 的坐标;

(2)在 y 轴上找一点 P ,使 PD + PH 的值最小,则 PD + PH 的最小值为  

(注:抛物线 y = a x 2 + bx + c ( a 0 ) 的对称轴是直线 x = b 2 a ,顶点坐标为 ( b 2 a 4 ac b 2 4 a )

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知抛物线 yx 2+ mx﹣2 m﹣4( m>0).

(1)证明:该抛物线与 x轴总有两个不同的交点;

(2)设该抛物线与 x轴的两个交点分别为 AB(点 A在点 B的右侧),与 y轴交于点 CABC三点都在⊙ P上.

①试判断:不论 m取任何正数,⊙ P是否经过 y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;

②若点 C关于直线 x=﹣ m 2 的对称点为点 E,点 D(0,1),连接 BEBDDE,△ BDE的周长记为 l,⊙ P的半径记为 r,求 1 r 的值.

来源:2018年广东省广州市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

已知二次函数 yax 2bx+ cab,若一次函数 ykx+4与二次函数的图象交于点 A(2,0).

(1)写出一次函数的解析式,并求出二次函数与 x轴交点坐标;

(2)当 ac时,求证:直线 ykx+4与抛物线 yax 2bx+ c一定还有另一个异于点 A的交点;

(3)当 cac+3时,求出直线 ykx+4与抛物线 yax 2bx+ c的另一个交点 B的坐标;记抛物线顶点为 M,抛物线对称轴与直线 ykx+4的交点为 N,设 S 25 9 S AMNS BMN,写出 S关于 a的函数,并判断 S是否有最大值?如果有,求出最大值;如果没有,请说明理由.

来源:2019年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,直线 y=﹣ x+3与 x轴、 y轴分别交于 BC两点,抛物线 y=﹣ x 2+ bx+ c经过点 BC,与 x轴另一交点为 A,顶点为 D

(1)求抛物线的解析式;

(2)在 x轴上找一点 E,使 EC+ ED的值最小,求 EC+ ED的最小值;

(3)在抛物线的对称轴上是否存在一点 P,使得∠ APB=∠ OCB?若存在,求出 P点坐标;若不存在,请说明理由.

来源:2019年内蒙古赤峰市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - x 2 + 2 x + c x 轴正半轴, y 轴正半轴分别交于点 A B ,且 OA = OB ,点 G 为抛物线的顶点.

(1)求抛物线的解析式及点 G 的坐标;

(2)点 M N 为抛物线上两点(点 M 在点 N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 Q 为抛物线上点 M N 之间(含点 M N ) 的一个动点,求点 Q 的纵坐标 y Q 的取值范围.

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图①,直线 y 1 2 x﹣3与 x轴、 y轴分别交于点 BC,抛物线 y 1 4 x 2 + bx+ cBC两点,且与 x轴的另一个交点为点 A,连接 AC

(1)求抛物线的解析式;

(2)在抛物线上是否存在点 D(与点 A不重合),使得 S DBCS ABC,若存在,求出点 D的坐标;若不存在,请说明理由;

(3)有宽度为2,长度足够长的矩形(阴影部分)沿 x轴方向平移,与 y轴平行的一组对边交抛物线于点 P和点 Q,交直线 CB于点 M和点 N,在矩形平移过程中,当以点 PQMN为顶点的四边形是平行四边形时,求点 M的坐标.

来源:2018年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 + bx + c 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C ,且关于直线 x = 1 对称,点 A 的坐标为 ( 1 , 0 )

(1)求二次函数的表达式;

(2)连接 BC ,若点 P y 轴上时, BP BC 的夹角为 15 ° ,求线段 CP 的长度;

(3)当 a x a + 1 时,二次函数 y = x 2 + bx + c 的最小值为 2 a ,求 a 的值.

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

抛物线 y a x 2 + c x轴交于AB两点,顶点为C,点P为抛物线上,且位于x轴下方.

(1)如图1,若 P 1 , 3 , B 4 , 0

①求该抛物线的解析式;

②若D是抛物线上一点,满足 DPO POB ,求点D的坐标;

(2)如图2,已知直线PAPBy轴分别交于EF两点.当点P运动时, OE + OF OC 是否为定值?若是,试求出该定值;若不是,请说明理由.

来源:2016年湖北省武汉市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线 y = x 2 + bx + c 与直线 AB 相交于 A B 两点,其中 A ( - 3 , - 4 ) B ( 0 , - 1 )

(1)求该抛物线的函数表达式;

(2)点 P 为直线 AB 下方抛物线上的任意一点,连接 PA PB ,求 ΔPAB 面积的最大值;

(3)将该抛物线向右平移2个单位长度得到抛物线 y = a 1 x 2 + b 1 x + c 1 ( a 1 0 ) ,平移后的抛物线与原抛物线相交于点 C ,点 D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 E ,使以点 B C D E 为顶点的四边形为菱形,若存在,请直接写出点 E 的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线 C 1 : y = 3 2 x 2 + 6 x + 2 的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线 l y kx + b 经过MN两点.

(1)结合图象,直接写出不等式 3 2 x 2 + 6 x + 2 < kx + b 的解集;

(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;

(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,求3﹣4q的最大值.

来源:2016年湖北省潜江市、天门市、仙桃市、江汉油田中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线的顶点为 A(1,﹣4),且与 x轴交于 BC两点,点 B的坐标为(3,0).

(1)写出 C点的坐标,并求出抛物线的解析式;

(2)观察图象直接写出函数值为正数时,自变量的取值范围.

来源:2017年内蒙古兴安盟中考数学试卷(b卷)
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题