抛物线 y = a x 2 + c 与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.
(1)如图1,若 P ( 1 , ﹣ 3 ) , B ( 4 , 0 ) .
①求该抛物线的解析式;
②若D是抛物线上一点,满足 ∠ DPO = ∠ POB ,求点D的坐标;
(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时, OE + OF OC 是否为定值?若是,试求出该定值;若不是,请说明理由.
有理数<0 、>0 、>0,且. (1)在数轴上将a、b、c三个数填在相应的括号中. (2)化简:.
解方程: (1); (2)
(1)化简:2a-[a-2(a-b)]-b (2)先化简,再求值:已知多项式A=32—6ab+b2,B=—22+3ab—5b2,当=1,b=—1时,求A+2B的值.
【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE ≌△AFG,从而得出结论:___________________. 【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由. 【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏东60°的A处,舰艇乙在指挥中心南偏西20°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以40海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.
已知:如图1,射线MN⊥AB,AM=1cm,MB=4cm.点C从M出发以2cm/s的 速度沿射线MN运动,设点 C的运动时间为t(s) (1)当△ABC为等腰三角形时,求t的值; (2)当△ABC为直角三角形时,求t的值; (3)当t满足条件:__________时,△ABC为钝角三角形; 当_________时,△ABC为锐角三角形.