如图,直线 y=﹣ x+3与 x轴、 y轴分别交于 B、 C两点,抛物线 y=﹣ x 2+ bx+ c经过点 B、 C,与 x轴另一交点为 A,顶点为 D.
(1)求抛物线的解析式;
(2)在 x轴上找一点 E,使 EC+ ED的值最小,求 EC+ ED的最小值;
(3)在抛物线的对称轴上是否存在一点 P,使得∠ APB=∠ OCB?若存在,求出 P点坐标;若不存在,请说明理由.
如图,已知矩形ABCD中,E是AB边的中点,连接CE,将△BCE沿直线CE折叠后,点B落在点B′处,连接AB′并延长交CD于点F.(1)求证:四边形AECF是平行四边形;(2)若AB=6,BC=4,求tan∠CB′F的值.
我市某中学为丰富学生的课余生活,提升学生的综合素质,在2014-2015学年七年级开设了足球、舞蹈、书法、信息、科技、生活等六门校本课程.为了解学生对这六门课程的喜爱情况,随即从中抽取部分学生的选择结果进行统计,并绘制了如图1、图2两幅不完整统计图表.请根据图中提供的信息回答下列问题: (1)此次抽取的学生工 人; (2)请补全图1的条形统计图; (3)图2表示“信息”所在扇形的圆心角的度数 ; (4)若该校2014-2015学年七年级共有480人,那么选取的课程是“科技”的学生共有 人.
解不等式组,并写出它的非负整数解.
如图,在平面直角坐标系中,抛物线y=-x2+bx+c与y轴交于点A(0,3),且经过点(5,-2),点B与点A关于对称轴对称,过点B作BC⊥x轴,垂足为C,连结OB.(1)求二次函数的解析式,并求出点B的坐标.(2)把△AOB以每秒1个单位的速度向右平移,得到△PDE,PE交OB于点F,PD交BC于点M,设向右平移运动的时间为t(s).设平移过程中与△OBC重叠部分的面积为S,试探求S 与t的函数关系式,并求当t为何值时,S最大?(3)在(2)的条件下,是否存在某一时刻t,使△OCE为等腰三角形?若存在,求出t;若不存在,请说明理由.
如图,点C在以AB为直径的⊙O上,∠CBA=30°,点D在AB上由点A开始向点B运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.(1)如果CD⊥AB,求证:EF为⊙O的切线;(2)求证:CE=CF;(3)如果点F恰好落在弧BC上,请在备用图中画出图形,探究并证明此时EF与AB的关系.