如图,直线 y=﹣ x+3与 x轴、 y轴分别交于 B、 C两点,抛物线 y=﹣ x 2+ bx+ c经过点 B、 C,与 x轴另一交点为 A,顶点为 D.
(1)求抛物线的解析式;
(2)在 x轴上找一点 E,使 EC+ ED的值最小,求 EC+ ED的最小值;
(3)在抛物线的对称轴上是否存在一点 P,使得∠ APB=∠ OCB?若存在,求出 P点坐标;若不存在,请说明理由.
一次函数 与反比例函数的图象都过点A,的图象与轴交于点B. (1)求点B坐标及反比例函数的表达式; (2)C是轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.
已知:如图,在△ABC中,BC=2,,∠ABC=135°,求AC和AB的长.
如图,⊙O与割线AC交于点B,C,割线AD过圆心O,且∠DAC=30°.若⊙O的半径OB=5,AD=13,求弦BC的长.
已知:二次函数 (1)若二次函数的图象过点,求此二次函数图象的对称轴; (2)若二次函数的图象与轴只有一个交点,求此时的值.
在平面直角坐标系xOy中,设点,是图形W上的任意两点. 定义图形W的测度面积:若的最大值为m,的最大值为n,则为图形W的测度面积. 例如,若图形W是半径为1的⊙O.当P,Q分别是⊙O与x轴的交点时,如图1,取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,取得最大值,且最大值n=2.则图形W的测度面积. (1)若图形W是等腰直角三角形ABO,OA=OB=1. ①如图3,当点A,B在坐标轴上时,它的测度面积S=; ②如图4,当AB⊥x轴时,它的测度面积S=; (2)若图形W是一个边长为1的正方形ABCD,则此图形测度面积S的最大值为; (3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.