高中数学

如图1,直角梯形中,分别为边上的点,且.将四边形沿折起成如图2的位置,使

(1)求证:平面
(2)求四棱锥的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求证:
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。

求证:(1)PA∥平面BDE      
(2)平面PAC平面BDE

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.

(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,的中点,如图2.
(1)求证:∥平面
(2)求证:平面
(3)求点到平面的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,为正三角形,平面的中点,

(Ⅰ)求证:平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在直三棱柱ABC﹣A1B1C1中,BC=CC1,AB⊥BC.点M,N分别是CC1,B1C的中点,G是棱AB上的动点.

(Ⅰ)求证:B1C⊥平面BNG;
(Ⅱ)若CG∥平面AB1M,试确定G点的位置,并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,内接于圆O,AB是圆O的直径,,四边形DCBE为平行四边形,平面ABC.

(1)证明:平面平面ADE;
(2)在CD上是否存在一点M,使得平面ADE?证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分9分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.

(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,,,, 点 为中点.将沿折起, 使平面平面,得到几何体,如图2所示.

(1)在上找一点,使平面;  
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC-A1B1C1中, D、E分别是AB,BB1的中点.

(1)证明: BC1//平面A1CD;
(2)设AA1="AC=CB=1," AB=,求三棱锥D一A1CE的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知四棱锥,底面为矩形,侧棱,其中为侧棱上的两个三等分点,如下图所示.
(1)求证:
(2)求异面直线所成角的余弦值;
(3)求二面角的余弦值.
 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,矩形所在的平面和平面互相垂直,等腰梯形中,,分别为的中点,为底面的重心.

(1)求证:
(2)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是菱形,⊥平面,点分别为中点.

(1)求证:直线平面
(2)求与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直三棱柱中,AB=AC=5,D,E分别为BC, 的中点,四边形是边长为6的正方形.

(1)求证:∥平面
(2)求证:⊥平面
(3)求平面与平面的夹角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题