(本小题满分14分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.(1)求证:MN∥平面PAD;(2)求证:平面PMC⊥平面PCD.
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)⑴将y表示为x的函数;⑵写出f(x)的单调区间,并证明;⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
已知ABCD四点的坐标分别为 A(1,0), B(4,3),C(2,4),D(0,2)⑴证明四边形ABCD是梯形;⑵求COS∠DAB。⑶设实数t满足(-t)·=0,求t的值。
⑴已知cos(x+)=,求cos(-x)+ cos2(-x)的值。⑵已知tanα=2,求
已知函数f(x)=-3sin2x-4cosx+2⑴求f()的值;⑵求f(x)的最大值和最小值。
集合A={>1},B={>2},AB,求a的取值范围。