已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列.
已知或; (1)若,求实数的取值范围; (2)若,求实数的取值范围.
已知,且有. (1)若在上是增函数,求实数的取值范围; (2)试判断是否存在正数,使函数在区间上的值域为,若存在求出值;若不存在说明理由.
已知为上的奇函数,为上的偶函数,且满足. (1)求与的解析式,指出的单调性(单调性不要求证明); (2)若关于不等式恒成立,求的取值范围; (3)若在上有唯一零点,求的取值范围.
有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:,,) (1)若,候鸟每分钟的耗氧量为个单位时,它的飞行速度是多少? (2)若,候鸟停下休息时,它每分钟的耗氧量为多少个单位? (3)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?
已知(是常数)为幂函数,且在第一象限单调递增. (1)求的表达式; (2)讨论函数在上的单调性,并证之.