.(本小题满分12分)一位客人去北京旅游,他游览长城、故宫、鸟巢这三个景点的概率分别为0.9、0.8、0.8,且他是否游览哪个景点互不影响.设表示客人离开北京时游览的景点数与没有游览的景点数之差的绝对值.(1)求时的概率;(2)记“函数在区间上是增函数”为事件A,求事件A的概率.
(本大题满分10分)已知的顶点坐标分别为A(-1,1),B(2,7),C(-4,5)。求AB边上的高CD所在的直线方程。
已知,且,求的最大值.
在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设为平面上的点,满足:存在过点的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点的坐标.
如图,在五面体中,平面,,,为的中点,.(1)求异面直线与所成角的大小;(2)证明:平面平面;(3)求与平面所成角的正弦值.
已知圆,直线.(1)求证:直线与圆恒相交;(2)求直线被圆截得的弦长最短时的值以及最短弦长.