.(本小题满分12分)一位客人去北京旅游,他游览长城、故宫、鸟巢这三个景点的概率分别为0.9、0.8、0.8,且他是否游览哪个景点互不影响.设表示客人离开北京时游览的景点数与没有游览的景点数之差的绝对值.(1)求时的概率;(2)记“函数在区间上是增函数”为事件A,求事件A的概率.
(13分)已知点A(2,8),B,C都在抛物线上,△ABC的重心与此抛物线E的焦点F重合. (1)写出抛物线E的方程及焦点坐标; (2)求线段BC的中点M的坐标及BC边所在的直线方程.
(13分)如图(2):PA⊥面ABCD,CD2AB, ∠DAB=90°,E为PC的中点. (1)证明:BE//面PAD; (2)若PA=AD,证明:BE⊥面PDC.
已知抛物线的准线方程为,与直线 在第一象限相交于点,过作的切线,过作的垂线交x轴正 半轴于点,过作的平行线交抛物线于第一象限内的点,过作的切线,过作的垂线交x轴正半轴于点,依此类推,在x 轴上形成一点列,,()设的坐标为() (Ⅰ)求抛物线的方程;(Ⅱ)试探求关于的递推关系;
已知函数=的图象与直线相切,切点的横坐标为1。(Ⅰ)求函数的表达式和直线的方程;(Ⅱ)求函数的单调区间;(Ⅲ)若不等式对定义域内的任意x恒成立,求实数m的取值范围。
有道解三形的题目,因纸张破损致使有一个条件不清,具体如下:在中,已知,, ,求角A。经推断,破损处的条件为三角形一边的长度,且答案提示解,试将条件补充完整,并说明理由。