.(本小题满分12分)在△ABC中,内角A、B、C所对边的边长分别为,,,且与的夹角为。(1)求内角C;(2)已知,且△ABC的面积。求的值。
已知抛物线的准线为,焦点为F,的圆心在轴的正半轴上,且与轴相切,过原点O作倾斜角为的直线,交于点A,交于另一点B,且AO=OB=2. (1)求和抛物线C的方程; (2)若P为抛物线C上的动点,求的最小值; (3)过上的动点Q向作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.
. 设 (1)若是函数的极值点,求实数的值; (2)若函数在[0,2]上是单调减函数,求实数的取值范围.
如图,在四棱锥P—ABCD中,底面ABCD是矩形,平面ABCD,PA=AD=2,AB=1,于点M. (1)求证:; (2)求直线CD与平面ACM所成的角的余弦值.
在数列中,时,其前项和满足: (1)求; (2)令,求数列的前项和
设角A、B、C是的三个内角,已知向量,且. (Ⅰ)求角C的大小; (Ⅱ)若向量,试求的取值范围.