(本小题满分13分)已知椭圆的两个焦点的坐标分别为,,并且经过点(,),M、N为椭圆上关于轴对称的不同两点.(1)求椭圆的标准方程;(2)若,试求点的坐标;(3)若为轴上两点,且,试判断直线的交点是否在椭圆上,并证明你的结论.
ABCD为平行四边形,P为平面ABCD外一点,PA⊥面ABCD,且PA=AD=2,AB=1,AC=。 求证:平面ACD⊥平面PAC; 求异面直线PC与BD所成角的余弦值; 设二面角A—PC—B的大小为,试求的值。
已知函数 求其最小正周期; 当时,求其最值及相应的值。 试求不等式的解集
过双曲线的左焦点且斜率为的直线与两条准线交于M,N两点,以MN为直径的圆过原点,且点(3,2)在双曲线上,求此双曲线方程。
有6名同学站成一排,求: (1)甲不站排头也不站排尾有多少种不同的排法: (2)甲、乙、丙不相邻有多少种不同的排法.
求和:;