如下图所示:在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(Ⅰ)求证:AC⊥BC1;
(Ⅱ)求证:AC1∥平面CDB1;
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。
(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;
在四棱锥中,,,,为的中点,为的中点,.
(1)求证:;
(2)求证:;
(3)求三棱锥的体积.
(本小题满分12分)如图,为正三角形,平面,,为的中点,,.
(Ⅰ)求证:平面;
(Ⅱ)求平面与平面所成的锐二面角的余弦值.
在直三棱柱ABC﹣A1B1C1中,BC=CC1,AB⊥BC.点M,N分别是CC1,B1C的中点,G是棱AB上的动点.
(Ⅰ)求证:B1C⊥平面BNG;
(Ⅱ)若CG∥平面AB1M,试确定G点的位置,并给出证明.
(本小题满分12分)如图,内接于圆O,AB是圆O的直径,,,,四边形DCBE为平行四边形,平面ABC.
(1)证明:平面平面ADE;
(2)在CD上是否存在一点M,使得平面ADE?证明你的结论.
(本小题满分12分)如图,直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱C1的中点,且CF⊥AB,AC=BC.
(1)求证:CF∥平面AEB1;
(2)求证:平面AEB1⊥平面ABB1A1.
(本小题满分9分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.
(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.
如图1,在直角梯形中,,,, 点 为中点.将沿折起, 使平面平面,得到几何体,如图2所示.
(1)在上找一点,使平面;
(2)求点到平面的距离.
如图,三棱柱是直棱柱,.点分别为和的中点.
(1)求证:平面;
(2)求点到平面的距离.
如图,在直三棱柱中,AB=AC=5,D,E分别为BC, 的中点,四边形是边长为6的正方形.
(1)求证:∥平面;
(2)求证:⊥平面;
(3)求平面与平面的夹角的余弦值.