高中数学

(本小题满分12分)如图,直三棱柱的底面是边长为的正三角形,点M在边BC上,是以M为直角顶点的等腰直角三角形.

(1)求证:直线∥平面
(2)求三棱锥的高

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,为正三角形,平面的中点,

(Ⅰ)求证:平面
(Ⅱ)求多面体的体积..

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.

(1)若M为PA中点,求证:AC∥平面MDE;
(2)求直线PA与平面PBC所成角的正弦值;
(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角的大小为

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四边形为矩形,平面上的点,且平面

(1)求三棱锥的体积;
(2)设在线段上,且满足,试在线段上确定一点,使得平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别为CD、PC的中点.求证:

(1)PA⊥底面ABCD;
(2)BE∥平面PAD;
(3)平面BEF⊥平面PCD.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,,,,点中点.将沿折起,使平面平面,得到几何体,如图2所示.

(1)在上找一点,使平面;
(2)求点到平面的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,为正三角形,平面的中点,

(Ⅰ)求证:平面
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在直三棱柱ABC﹣A1B1C1中,BC=CC1,AB⊥BC.点M,N分别是CC1,B1C的中点,G是棱AB上的动点.

(Ⅰ)求证:B1C⊥平面BNG;
(Ⅱ)若CG∥平面AB1M,试确定G点的位置,并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,内接于圆O,AB是圆O的直径,,四边形DCBE为平行四边形,平面ABC.

(1)证明:平面平面ADE;
(2)在CD上是否存在一点M,使得平面ADE?证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分9分)如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a.

(1)求证:MN∥平面PAD;
(2)求证:平面PMC⊥平面PCD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在直角梯形中,,,, 点 为中点.将沿折起, 使平面平面,得到几何体,如图2所示.

(1)在上找一点,使平面;  
(2)求点到平面的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥中,⊥底面,底面为菱形,点为侧棱上一点.
(1)若,求证:平面; 
(2)若,求证:平面⊥平面.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是平行四边形,,设中点,点在线段上且
(1)求证:平面
(2)设二面角的大小为,若,求的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,矩形所在的平面和平面互相垂直,等腰梯形中,,分别为的中点,为底面的重心.

(1)求证:
(2)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面是菱形,⊥平面,点分别为中点.

(1)求证:直线平面
(2)求与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题