江苏省盐城市高三第三次模拟考试数学试卷
某工厂甲、乙、丙三个车间生产同一产品,数量分别为120件,90件,60
件. 为了解它们的产品质量是否有显著差异,用分层抽样方法抽取了一个容量
为的样本进行调查,其中从丙车间的产品中抽取了4件,则 .
设,函数的图象若向右平移个单位所得到的图象与原图象重合,若向左平移个单位所得到的图象关于轴对称,则的值为 .
若圆过双曲线的右焦点,且圆与双曲线的渐近线在第一、四象限的交点分别为、,当四边形为菱形时,双曲线的离心率为 .
如图,四棱锥中,⊥底面,底面为菱形,点为侧棱上一点.
(1)若,求证:平面;
(2)若,求证:平面⊥平面.
图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔、与桥面垂直,通过测量得知,,当为中点时,.
(1)求的长;
(2)试问在线段的何处时,达到最大.
|
已知椭圆的右准线,离心率,,是椭圆上的两动点,动点满足,(其中为常数).
(1)求椭圆标准方程;
(2)当且直线与斜率均存在时,求的最小值;
(3)若是线段的中点,且,问是否存在常数和平面内两定点,,使得动点满足,若存在,求出的值和定点,;若不存在,请说明理由.
已知函数,为常数.
(1)若函数在处的切线与轴平行,求的值;
(2)当时,试比较与的大小;
(3)若函数有两个零点、,试证明.
若数列满足且(其中为常数),是数列的前项和,数列满足.
(1)求的值;
(2)试判断是否为等差数列,并说明理由;
(3)求(用表示).
已知曲线的参数方程为(为参数),曲线在点处的切线为.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求的极坐标方程.
一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验;若少于2件合格品,则不能通过检验,也不再抽检. 假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为元,求的概率分布及数学期望.