若数列满足且(其中为常数),是数列的前项和,数列满足.(1)求的值;(2)试判断是否为等差数列,并说明理由;(3)求(用表示).
已知函数. (1)若在上是增函数, 求实数a的取值范围. (2)若是的极大值点,求在上的最大值; (3)在(2)的条件下,是否存在实数b,使得函数的图像与函数的图像恰有3个交点,若存在,求出b的取值范围,若不存在,说明理由.
(本小题满分12分) 已知数列的前项和为,等差数列中,成等比数列。 (1)求数列、的通项公式;(2)求数列的前项和
(本小题满分12分) 在一次大型活动中,在安全保障方面,警方从武警训练基地挑选防暴警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选。假定某基地有4名武警战士(分别记为A、B、C、D)拟参加挑选,且每人能通过体能、射击、反应的概率分别为。这三项测试能否通过相互之间没有影响。 (1)求A能够入选的概率;试卷 (2)规定:按入选人数得训练经费(每入选1人,则相应的训练基地得到3000元的训练经费),求该基地得到训练经费不大于6000元的概率。
本小题满分12分) 在直三棱柱中, AC=4,CB=2,AA1=2,E、F分别是的中点。 (1)证明:平面平面; (2)证明:平面ABE; (3)设P是BE的中点,求三棱锥的体积。
(本小题满分10分) 在ΔABC中,角A、B、C所对的边分别为a、b、c,且. (Ⅰ)求的值; (Ⅱ)若,,求∠C和ΔABC的面积.