已知椭圆的右准线,离心率,,是椭圆上的两动点,动点满足,(其中为常数).(1)求椭圆标准方程;(2)当且直线与斜率均存在时,求的最小值;(3)若是线段的中点,且,问是否存在常数和平面内两定点,,使得动点满足,若存在,求出的值和定点,;若不存在,请说明理由.
已知,求下列各式的值:(1);(2).
已知集合,若,(1)求的值; (2)求.
已知,. (1)求的最小值; (2)证明:.
已知圆,直线,以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系. (1)将圆C和直线方程化为极坐标方程; (2)P是上的点,射线OP交圆C于点R,又点Q在OP上且满足,当点P在上移动时,求点Q轨迹的极坐标方程.
如图,内接于上,,交于点E,点F在DA的延长线上,,求证: (1)是的切线; (2).