(本小题满分12分)如图,直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱C1的中点,且CF⊥AB,AC=BC.(1)求证:CF∥平面AEB1;(2)求证:平面AEB1⊥平面ABB1A1.
观察下列两个结论:(Ⅰ)若,且,则;(Ⅱ)若,且,则;先证明结论(Ⅱ),再类比(Ⅰ)(Ⅱ)结论,请你写出一个关于个正数的结论?(写出结论,不必证明。
已知复数,(1)当时,求;(2)当为何值时,为纯虚数;(3)若复数在复平面上所对应的点在第四象限,求实数的取值范围。
某校的研究性学习小组为了研究高中学生的身体发育状况,在该校随机抽出120名17至18周岁的男生,其中偏重的有60人,不偏重的也有60人。在偏重的60人中偏高的有40人,不偏高的有20人;在不偏重的60人中偏高和不偏高人数各占一半(1)根据以上数据建立一个列联表:
(2)请问该校17至18周岁的男生身高与体重是否有关?
已知数列的前项和为.(Ⅰ)计算;(Ⅱ)根据(Ⅰ)所得到的计算结果,猜想的表达式,不必证明.
设函数,其中.证明:当时,函数没有极值点;当时,函数有且只有一个极值点,并求出极值.