已知数列的前项和为.(Ⅰ)计算;(Ⅱ)根据(Ⅰ)所得到的计算结果,猜想的表达式,不必证明.
(本小题满分12分) 如图,在直角坐标系中,已知椭圆:的离心率,左、右两个焦点分别为、。过右焦点且与轴垂直的直线与椭圆相交、两点,且. (1)求椭圆的方程; (2)设椭圆的左顶点为,下顶点为,动点满足,试求点的轨迹方程,使点关于该轨迹的对称点落在椭圆上.
(本小题满分12分) 已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4 (1)若a1=2,设,求数列{cn}的前n项的和Tn; (2)在(1)的条件下,若有的最大值.
(本小题满分12分) 如图,已知直平行六面体ABCD-A1B1C1D1中,AD⊥BD,AD=BD=a,E是CC1的中点,A1D⊥BE. (I)求证:A1D⊥平面BDE; (II)求二面角B―DE―C的大小;
(本小题满分12分) 已知函数. (1)求的值域和最小正周期; (2)设,且,求的值. .
(本小题满分10分) 在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球. 求: (1)最多取两次就结束的概率; (2)整个过程中恰好取到2个白球的概率;