在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为:,(t为参数),直线与曲线分别交于两点. (1)写出曲线和直线的普通方程;(2)若成等比数列,求的值.
已知抛物线的焦点为,抛物线上的点到准线的距离为.(1)求抛物线的标准方程;(2)设直线与抛物线的另一交点为,求的值.
已知圆过点,且圆心在直线上.(1)求圆的方程;(2)若直线与圆交于两点,当最小时,求直线的方程及的最小值.
已知,,其中.(1)若,且为真,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围.
设函数,函数,且,的图像过点及.(1)求和的表达式;(2)求函数的定义域和值域.
已知函数.(1)当函数取最大值时,求自变量的取值集合;(2)求该函数的单调递增区间.