已知圆过点,且圆心在直线上.(1)求圆的方程;(2)若直线与圆交于两点,当最小时,求直线的方程及的最小值.
(本小题满分12分)如图,在四棱锥中,底面,是直角梯形,,,,是的中点.(1)求证;平面平面;(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球,现从中同时取出3个球.(1)求恰有两个黑球的概率; (2)记取出红球的个数为随机变量,求的分布列和数学期望.
(本小题满分12分)设的内角,,所对的边分别为,,,且.(1)求角的大小; (2)若,求的周长的取值范围.
已知函数.(1)当 时,与在定义域上单调性相反,求的最小值。(2)当时,求证:存在,使有三个不同的实数解,且对任意且都有.
(本小题满分13分)已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO,BO分别交直线l:y=x-2于M,N两点,求|MN|的最小值.