海南省高三5月模拟理科数学试卷
若为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数的共轭复数是 ( )
A. | B. | C. | D. |
能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是 ( )
A. | B. |
C. | D. |
在中,,边上的高分别为,则以为焦点,且过两点的椭圆和双曲线的离心率的乘积为 ( )
A.1 | B. | C.2 | D. |
下列命题,正确的个数是 ( )
①直线是函数的一条对称轴
②将函数的图像上的每个点的横坐标缩短为原来的(纵坐标不变),再向左平行移动个单位长度变为函数的图像.
③设随机变量~,若,,则
④的二项展开式中含有项的二项式系数是210.
A.1 | B.2 | C.3 | D.4 |
如图,在棱长为的正方体中,为的中点,为 上任意一点,为上任意两点,且的长为定值,则下面的四个值中不为定值的是 ( )
A.点到平面的距离 |
B.三棱锥的体积 |
C.直线与平面所成的角 |
D.二面角的大小 |
已知双曲线的左、右焦点分别为,双曲线的离心率为,若双曲线上一点使,点为直线上的一点,且,则的值为 ( )
A. | B. | C. | D. |
采用随机模拟试验的方法估计三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为_________
若对于定义在R上的函数 ,其图象是连续不断的,且存在常数使得对任意实数都成立,则称 是一个“—伴随函数”.有下列关于 “—伴随函数”的结论:
①是常数函数中唯一个“—伴随函数”;
②不是“—伴随函数”;
③是一个“—伴随函数”;
④“—伴随函数”至少有一个零点.
其中不正确的序号是_________(填上所有不正确的结论序号).
(本小题满分12分)设等差数列的前项和为,且,,
(1)求等差数列的通项公式.
(2)令,数列的前项和为.证明:对任意,都有.
(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.
(1)求证:;
(2)求直线与平面所成角的正弦值;
(3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.
(本小题满分12分)某校对参加高校自主招生测试的学生进行模拟训练,从中抽出N名学生,其数学成绩的频率分布直方图如图所示.已知成绩在区间[90,100]内的学生人数为2人。
(1)求N的值并估计这次测试数学成绩的平均分和众数;
(2)学校从成绩在[70,100]的三组学生中用分层抽样的方法抽取12名学生进行复试,若成绩在[80,90)这一小组中被抽中的学生实力相当,且能通过复试的概率均为,设成绩在[80,90)这一小组中被抽中的学生中能通过复试的人数为,求的分布列和数学期望.
(本小题满分12分)已知椭圆的离心率为,椭圆的右焦点和抛物线的焦点相同.
(1)求椭圆的方程.
(2)如图,已知直线与椭圆及抛物线都有两个不同的公共点,且直线与椭圆交于两点;过焦点的直线与抛物线交于两点,记,求的取值范围.
(本小题满分12分)已知函数.
(1)讨论函数的单调性;
(2)对于任意正实数,不等式恒成立,求实数的取值范围;
(3)是否存在最小的正常数,使得:当时,对于任意正实数,不等式恒成立?给出你的结论,并说明结论的合理性.
(本小题满分10分)选修4—1:几何证明选讲
如图,AB是的直径,弦BD、CA的延长线相交于点E,F为BA延长线上一点,且,求证:
(1);
(2).
(本小题满分10分)选修4-4:坐标系与参数方程选讲.
在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数).
(1)若曲线与曲线只有一个公共点,求的取值范围;
(2)当时,求曲线上的点与曲线上点的最小距离.