(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.(1)求证:;(2)求直线与平面所成角的正弦值;(3)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.
设椭圆C:的左焦点为F,上顶点为A,过点A作垂直于AF的直线交椭圆C于另外一点P,交x轴正半轴于点Q,且 (1)求椭圆C的离心率; (2)若过A、Q、F三点的圆恰好与直线l:相切,求椭圆C的方程.
已知中心在原点,左、右顶点A1、A2在x轴上,离心率为的双曲线C经过点P(6,6),动直线l经过△A1PA2的重心G与双曲线C交于不同两点M、N,Q为线段MN的中点。 (1)求双曲线C的标准方程 (2)当直线l的斜率为何值时,。
已知椭圆的离心率为,且其焦点F(c,0)(c>0)到相应准线l的距离为3,过焦点F的直线与椭圆交于A、B两点。 (1)求椭圆的标准方程; (2)设M为右顶点,则直线AM、BM与准线l分别交于P、Q两点,(P、Q两点不重合),求证:
在面积为9的中,,且。现建立以A点为坐标原点,以的平分线所在直线为x轴的平面直角坐标系,如图所示。 (1)求AB、AC所在的直线方程; (2)求以AB、AC所在的直线为渐近线且过点D的双曲线的方程; (3)过D分别作AB、AC所在直线的垂线DF、DE(E、F为垂足),求的值。
如图,椭圆的中心在原点,其左焦点与抛物线的焦点重合,过的直线与椭圆交于A、B两点,与抛物线交于C、D两点.当直线与x轴垂直时,. (Ⅰ)求椭圆的方程; (II)求过点O、,并且与椭圆的左准线相切的圆的方程; (Ⅲ)求的最大值和最小值.