(本小题满分10分)选修4-4:坐标系与参数方程选讲.在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数).(1)若曲线与曲线只有一个公共点,求的取值范围;(2)当时,求曲线上的点与曲线上点的最小距离.
已知正方形的边长为2,.将正方形沿对角线折起,使,得到三棱锥,如图所示. (1)当时,求证:;(2)当二面角的大小为时,求二面角的正切值.
已知等比数列满足,且是,的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)若,,求使 成立的的最小值.
已知函数.(Ⅰ) 求函数的最小值和最小正周期;(Ⅱ) 已知内角的对边分别为,且,若向量与共线,求的值.
已知在递增等差数列中,,成等比数列,数列的前n项和为,且.(1)求数列、的通项公式;(2)设,求数列的前和.
对定义在上,并且同时满足以下两个条件的函数称为H函数.① 对任意的,总有;② 当时,总有成立.已知函数与是定义在上的函数.(1)试问函数是否为H函数?并说明理由;(2)若函数是H函数,求实数a的值;(3)在(2)的条件下,若方程有解,求实数m的取值范围.