对定义在上,并且同时满足以下两个条件的函数称为H函数.① 对任意的,总有;② 当时,总有成立.已知函数与是定义在上的函数.(1)试问函数是否为H函数?并说明理由;(2)若函数是H函数,求实数a的值;(3)在(2)的条件下,若方程有解,求实数m的取值范围.
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CD∥AP,AD、BC相交于点E,F为CE上一点,且DE2 = EF·EC. (Ⅰ)求证:CE·EB = EF·EP; (Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的长.
已知函数. (Ⅰ)函数在区间上是增函数还是减函数?证明你的结论; (Ⅱ)当时,恒成立,求整数的最大值; (Ⅲ)试证明:.
如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点. (Ⅰ)若点G的横坐标为,求直线AB的斜率; (Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2. 试问:是否存在直线AB,使得S1=S2?说明理由.
在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=1,AA1=,D为AA1中点,BD与AB1交于点O,CO丄侧面ABB1A1. (Ⅰ)证明:BC丄AB1; (Ⅱ)若OC=OA,求二面角C1-BD-C的余弦值.
在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级. 某考场考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人. (Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数; (Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分. (i)求该考场考生“数学与逻辑”科目的平均分; (ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 从这10 人中随机抽取两人,求两人成绩之和的分布列和数学期望.