如图,甲船在A处观察乙船,乙船在它的北偏东60°的方向,两船相距a海里,乙船正向北行驶,若甲船是乙船速度的倍,问:甲船应取什么方向才能追上乙船?追上时甲船行驶了多少海里?
已知函数是定义在上的增函数,对于任意的,都有,且满足. (1)求的值; (2)求满足的的取值范围.
记函数的定义域为集合,函数的定义域为集合. (Ⅰ)求和; (Ⅱ)若,求实数的取值范围.
(满分14分)已知圆O:,直线. (1)若直线l与圆O交于不同的两点A,B,当∠AOB=时,求k的值. (2)若,P是直线l上的动点,过P作圆O的两条切线PC、PD,切点为C、D,探究:直线CD是否过定点; (3)若EF、GH为圆O:的两条相互垂直的弦,垂足为M(1,),求四边形EGFH的面积的最大值。
(满分13分)如图所示,正四棱锥P-ABCD中,O为底面正方形的中心,侧棱PA与底面ABCD所成的角的正切值为. (1)求侧面PAD与底面ABCD所成的二面角的大小; (2)若E是PB的中点,求异面直线PD与AE所成角的正切值; (3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.
(满分12分) 已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是 (1)求的值 (2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为,第二次取出的小球标号为 (i)记“”为事件,求事件的概率; (ii)在区间[0,2]内任取2个实数,求事件“恒成立”的概率.