如图,某住宅小区的平面图呈圆心角为 120 ° 的扇形 A O B ,小区的两个出入口设置在点 A 及点 C 处,且小区里有一条平行于 B O 的小路 C D ,已知某人从 C 沿 C D 走到 D 用了10分钟,从 D 沿 D A 走到 A 用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径 O A 的长(精确到1米).
(本小题满分14分)已知定义域为R的函数是奇函数. (1)求a、b的值; (2)若对任意的x∈R,不等式f(x2-x)+f(2x2-t)<0恒成立,求t的取值范围.
判断函数在上的单调性,并给出证明.
已知集合 求:(1); (2); (3)若,且,求的范围
(本小题满分16分)已知直线与⊙相交于A,B两点,过点A,B的两条切线相交于点P. (1)求点P的坐标; (2)若N为线段AB上的任意一点(不包括端点),过点N的直线交⊙O于C,D两点,过点C、D的两条切线相交于点Q,判断点Q的轨迹是否经过定点?若过定点,求出该点的坐标;若不过定点,说明理由.
(本小题满分16分)已知A(﹣2, 0),B(2,0),C. (1)若,求△ABC的外接圆的方程; (2)若以线段AB为直径的圆O过点C(异于点A,B),直线x=2交直线AC于点R,线段BR的中点为D,试判断直线CD与圆O的位置关系,并证明你的结论.