若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数f(x)是“可拆函数”.
(1)函数f(x)=是否是“可拆函数”?请说明理由;
(2)若函数f(x)=2x+b+2x是“可拆函数”,求实数b的取值范围:
(3)证明:f(x)=cosx是“可拆函数”.
符号表示不超过的最大整数,如,定义函数,那么下列结论中正确的序号是 .
①函数的定义域为,值域为;
②方程有无数解;
③函数是周期函数;
④函数在是增函数.
已知函数 f(x)的定义域为 A,若当f(x1)=f(x2)(x1,x2∈A)时,总有x1=x2,则称 f(x)为单值函数.例如,函数f(x)=2x+1(x∈R)是单值函数.给出下列命题:
①函数f(x)=x2(x∈R)是单值函数;
②函数f(x)=2x(x∈R)是单值函数;③若f(x)为单值函数,x1,x2∈A,且x1≠x2,则f(x1)≠f(x2);
④函数f(x)=是单值函数.
其中的真命题是 .(写出所有真命题的编号)
设函数在上有定义,对于任一给定的正数,定义函数,则称函数为的“界函数”,若给定函数,则下列结论不成立的是: .
①;
②;
③;
④
德国著名数学家狄利克雷在数学领域成就卓著,以其名命名的函数被称为狄利克雷函数,则关于函数f(x)有如下四个命题:
①;
②函数f(x)是偶函数;
③任何一个不为零的有理数T,f(x+T)=f(x)对任意的恒成立;
④存在三个点,使得△ABC为等边三角形.
其中证明题的个数是
A.1 | B.2 | C.3 | D.4 |
若函数在上的值域为,则称函数为“和谐函数”.下列函数中:①;②;③;④,“和谐函数”的个数为( )
A.1个 | B.2个 | C.3个 | D.4个 |
对于定义域为的函数,若同时满足下列条件:
①在内单调递增或单调递减;
②存在区间,使在上的值域为;那么把()叫闭函数.
(1)求闭函数符合条件②的区间;
(2)判断函数是否为闭函数?并说明理由;
(3)判断函数是否为闭函数?若是闭函数,求实数的取值范围.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+b﹣1(a≠0).
(1)当a=1,b=﹣2时,求f(x)的不动点;
(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
对于任意x,[x]表示不超过x的最大整数,如[1.1]=1,[﹣2.1]=﹣3,定义R上的函数f(x)=[2x]+[4x]+[8x],若A={y|y=f(x),0≤x≤1},则A中所有元素的和为( )
A.55 | B.58 | C.63 | D.65 |
如果两个函数的对应关系相同,值域相同,但定义域不同,则这两个函数为“同族函数”,那么函数y=x2,x∈{1,2}的“同族函数”有( )
A.3个 | B.7个 | C.8个 | D.9个 |
设的定义域为,若满足下面两个条件,则称为闭函数.①在内是单调函数;②存在,使在上的值域为,如果为闭函数,那么的取值范围是( )
A. | B. | C. | D. |