对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+b﹣1(a≠0).(1)当a=1,b=﹣2时,求f(x)的不动点;(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
已知函数, . (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求函数的单调区间; (Ⅲ)当时,函数在上的最大值为,若存在,使得成立,求实数b的取值范围.
如图,四边形与都是边长为的正方形,点E是的中点, 求证:; 求证:平面; 求体积与的比值。
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x (单位:元/千克)满足关系式y=+10(x-6)2,(其中3<x<6,为常数,)已知销售价格为5元/千克时,每日可售出该商品11千克。 (I)求的值; (II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。
设命题:,命题:; 如果“或”为真,“且”为假,求的取值范围。
已知焦距为的双曲线的焦点在x轴上,且过点P. (Ⅰ)求该双曲线方程; (Ⅱ)若直线m经过该双曲线的右焦点且斜率为1,求直线m被双曲线截得的弦长.