在平面直角坐标系 xOy 中,点P到点F 3 , 0 的距离的4倍与它到直线 x = 2 的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和
(Ⅰ)求点P的轨迹C;
(Ⅱ)设过点F的直线I与轨迹C相交于M,N两点,求线段MN长度的最大值。
在直角坐标平面内,将每个点绕原点按逆时针方向旋转的变换所对应的矩阵为,将每个点横、纵坐标分别变为原来的倍的变换所对应的矩阵为. (1)求矩阵的逆矩阵; (2)求曲线先在变换作用下,然后在变换作用下得到的曲线方程.
设(是自然对数的底数,),且. (1)求实数的值,并求函数的单调区间; (2)设,对任意,恒有成立.求实数的取值范围; (3)若正实数满足,,试证明:;并进一步判断:当正实数满足,且是互不相等的实数时,不等式是否仍然成立.
如图所示,在边长为的正方形中,点在线段上,且,,作//,分别交,于点,,作//,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图所示的三棱柱. (1)求证:平面; (2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.
如图,在圆上任取一点,过点作轴的垂线段,为垂足.设为线段的中点. (1)当点在圆上运动时,求点的轨迹的方程; (2)若圆在点处的切线与轴交于点,试判断直线与轨迹的位置关系.
已知函数(,,),的部分图像如图所示,、分别为该图像的最高点和最低点,点的坐标为. (1)求的最小正周期及的值; (2)若点的坐标为,,求的值和的面积.