已知圆锥的顶点为 P ,底面圆心为 O ,半径为 2 。
(1)设圆锥的母线长为4,求圆锥的体积;
(2)设 P O = 4 , O A , O B 是底面半径,且 ∠ A O B = 90 ° ,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.
(本小题满分14分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由.
如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且,垂足为E,若将沿AM折起,使点D位于位置,连接,得四棱锥. (1)求证:;(2)若,直线与平面ABCM所成角的大小为,求直线与平面ABCM所成角的正弦值.
(本题14分)设数列是首项为,公差为的等差数列,其前项和为,且成等差数列. (Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,求.
(本题14分)向量,设函数. (1)求的最小正周期与单调递减区间; (2)在中,分别是角的对边,若的面积 为,求a的值.
(本题满分15分 )已知函数. (1)求函数的最大值; (2)若,不等式恒成立,求实数的取值范围; (3)若,求证:.